IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v173y2019icp551-567.html
   My bibliography  Save this article

A nonparametric test for block-diagonal covariance structure in high dimension and small samples

Author

Listed:
  • Xu, Kai
  • Hao, Xinxin

Abstract

In this paper we consider the problem of hypothesis testing for block-diagonal structure of high-dimensional covariance matrix. We develop a bias correction to the existing scalar transform invariant test statistic that is constructed based on an empirical distance between the full and a block diagonal covariance matrix, without requiring any specific parametric distribution such as the normality assumption. Under the high-dimensional null hypothesis and the scenario of the alternatives, which allows power evaluations, we derive the asymptotic distribution of the proposed test statistic without specifying an explicit relationship between the dimension and the sample size. Monte Carlo simulation studies demonstrate that it has good size and power in a wide range of settings. A real data example is also considered to illustrate the efficacy of the approach.

Suggested Citation

  • Xu, Kai & Hao, Xinxin, 2019. "A nonparametric test for block-diagonal covariance structure in high dimension and small samples," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 551-567.
  • Handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:551-567
    DOI: 10.1016/j.jmva.2019.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18305785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Ping-Shou & Chen, Song Xi, 2011. "Tests for High-Dimensional Regression Coefficients With Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 260-274.
    2. Srivastava, Muni S. & Reid, N., 2012. "Testing the structure of the covariance matrix with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 156-171.
    3. James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
    4. Srivastava, Muni S., 2009. "A test for the mean vector with fewer observations than the dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 518-532, March.
    5. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    6. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    7. Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.
    8. Smith M. & Kohn R., 2002. "Parsimonious Covariance Matrix Estimation for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1141-1153, December.
    9. Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
    10. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    11. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    12. Masashi Hyodo & Nobumichi Shutoh & Takahiro Nishiyama & Tatjana Pavlenko, 2015. "Testing block-diagonal covariance structure for high-dimensional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 460-482, November.
    13. Mathias Drton, 2004. "Model selection for Gaussian concentration graphs," Biometrika, Biometrika Trust, vol. 91(3), pages 591-602, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long Feng & Changliang Zou & Zhaojun Wang, 2016. "Multivariate-Sign-Based High-Dimensional Tests for the Two-Sample Location Problem," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 721-735, April.
    2. Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.
    3. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    4. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
    5. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    6. Mingyue Hu & Yongcheng Qi, 2023. "Limiting distributions of the likelihood ratio test statistics for independence of normal random vectors," Statistical Papers, Springer, vol. 64(3), pages 923-954, June.
    7. Yata, Kazuyoshi & Aoshima, Makoto, 2016. "High-dimensional inference on covariance structures via the extended cross-data-matrix methodology," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 151-166.
    8. Xu, Kai & Tian, Yan & He, Daojiang, 2021. "A high dimensional nonparametric test for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    9. Aki Ishii & Kazuyoshi Yata & Makoto Aoshima, 2021. "Hypothesis tests for high-dimensional covariance structures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 599-622, June.
    10. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    11. Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
    12. Dong, Kai & Pang, Herbert & Tong, Tiejun & Genton, Marc G., 2016. "Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 127-142.
    13. Bin Guo & Song Xi Chen, 2016. "Tests for high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
    14. Masashi Hyodo & Takahiro Nishiyama, 2018. "A simultaneous testing of the mean vector and the covariance matrix among two populations for high-dimensional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 680-699, September.
    15. Badi H. Baltagi & Chihwa Kao & Bin Peng, 2016. "Testing Cross-Sectional Correlation in Large Panel Data Models with Serial Correlation," Econometrics, MDPI, vol. 4(4), pages 1-24, November.
    16. Davy Paindaveine & Thomas Verdebout, 2013. "Universal Asymptotics for High-Dimensional Sign Tests," Working Papers ECARES ECARES 2013-40, ULB -- Universite Libre de Bruxelles.
    17. Yongcheng Qi & Fang Wang & Lin Zhang, 2019. "Limiting distributions of likelihood ratio test for independence of components for high-dimensional normal vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 911-946, August.
    18. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    19. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Tsukuda, Koji & Matsuura, Shun, 2021. "Limit theorem associated with Wishart matrices with application to hypothesis testing for common principal components," Journal of Multivariate Analysis, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:551-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.