IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i9p1726-1750.html
   My bibliography  Save this article

Asymptotic expansions of the distributions of estimators in canonical correlation analysis under nonnormality

Author

Listed:
  • Ogasawara, Haruhiko

Abstract

Asymptotic expansions of the distributions of typical estimators in canonical correlation analysis under nonnormality are obtained. The expansions include the Edgeworth expansions up to order O(1/n) for the parameter estimators standardized by the population standard errors, and the corresponding expansion by Hall's method with variable transformation. The expansions for the Studentized estimators are also given using the Cornish-Fisher expansion and Hall's method. The parameter estimators are dealt with in the context of estimation for the covariance structure in canonical correlation analysis. The distributions of the associated statistics (the structure of the canonical variables, the scaled log likelihood ratio and Rozeboom's between-set correlation) are also expanded. The robustness of the normal-theory asymptotic variances of the sample canonical correlations and associated statistics are shown when a latent variable model holds. Simulations are performed to see the accuracy of the asymptotic results in finite samples.

Suggested Citation

  • Ogasawara, Haruhiko, 2007. "Asymptotic expansions of the distributions of estimators in canonical correlation analysis under nonnormality," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1726-1750, October.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:9:p:1726-1750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00214-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Z. D. & He, Xuming, 2004. "A chi-square test for dimensionality with non-Gaussian data," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 109-117, January.
    2. Eaton, M. L. & Tyler, D., 1994. "The Asymptotic Distribution of Singular-Values with Applications to Canonical Correlations and Correspondence Analysis," Journal of Multivariate Analysis, Elsevier, vol. 50(2), pages 238-264, August.
    3. Ogasawara, Haruhiko, 2006. "Asymptotic expansion of the sample correlation coefficient under nonnormality," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 891-910, February.
    4. Wegelin, Jacob A. & Packer, Asa & Richardson, Thomas S., 2006. "Latent models for cross-covariance," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 79-102, January.
    5. James Steiger & Michael Browne, 1984. "The comparison of interdependent correlations between optimal linear composites," Psychometrika, Springer;The Psychometric Society, vol. 49(1), pages 11-24, March.
    6. William Rozeboom, 1965. "Linear correlations between sets of variables," Psychometrika, Springer;The Psychometric Society, vol. 30(1), pages 57-71, March.
    7. Fang, C. & Krishnaiah, P. R., 1982. "Asymptotic distributions of functions of the eigenvalues of some random matrices for nonnormal populations," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 39-63, March.
    8. Boik, Robert J., 1998. "A Local Parameterization of Orthogonal and Semi-Orthogonal Matrices with Applications," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 244-276, November.
    9. Anderson, T. W., 1999. "Asymptotic Theory for Canonical Correlation Analysis," Journal of Multivariate Analysis, Elsevier, vol. 70(1), pages 1-29, July.
    10. Ledyard Tucker, 1958. "An inter-battery method of factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(2), pages 111-136, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ogasawara, Haruhiko, 2009. "Asymptotic expansions in mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 902-912, May.
    2. Ogasawara, Haruhiko, 2010. "Accurate distribution and its asymptotic expansion for the tetrachoric correlation coefficient," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 936-948, April.
    3. Ogasawara, Haruhiko, 2016. "Bias correction of the Akaike information criterion in factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 144-159.
    4. Ogasawara, Haruhiko, 2009. "On the estimators of model-based and maximal reliability," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1232-1244, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:9:p:1726-1750. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.