IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v70y1999i1p1-29.html
   My bibliography  Save this article

Asymptotic Theory for Canonical Correlation Analysis

Author

Listed:
  • Anderson, T. W.

Abstract

The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regression when one set of variables is treated as independent (stochastic or nonstochastic) and the other set as dependent. Earlier work is corrected.

Suggested Citation

  • Anderson, T. W., 1999. "Asymptotic Theory for Canonical Correlation Analysis," Journal of Multivariate Analysis, Elsevier, vol. 70(1), pages 1-29, July.
  • Handle: RePEc:eee:jmvana:v:70:y:1999:i:1:p:1-29
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91810-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Baiguo & Guo, Jianhua & Wang, Hansheng, 2013. "Multivariate regression shrinkage and selection by canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 93-107.
    2. Marco Centoni & Gianluca Cubadda, 2015. "Common Feature Analysis of Economic Time Series: An Overview and Recent Developments," CEIS Research Paper 355, Tor Vergata University, CEIS, revised 05 Oct 2015.
    3. Eubank, R.L. & Hsing, Tailen, 2008. "Canonical correlation for stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1634-1661, September.
    4. Zaka Ratsimalahelo, 2003. "Strongly Consistent Determination of the Rank of Matrix," Econometrics 0307007, EconWPA.
    5. Gilbert, Scott & ZemcĂ­k, Petr, 2006. "Who's afraid of reduced-rank parameterizations of multivariate models? Theory and example," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 925-945, April.
    6. Bura, Efstathia & Cook, R. Dennis, 2003. "Rank estimation in reduced-rank regression," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 159-176, October.
    7. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    8. Zaka Ratsimalahelo, 2003. "Strongly Consistent Determination of the Rank of Matrix," EERI Research Paper Series EERI_RP_2003_04, Economics and Econometrics Research Institute (EERI), Brussels.
    9. Marco Centoni & Gianluca Cubadda, 2011. "Modelling comovements of economic time series: a selective survey," Statistica, Department of Statistics, University of Bologna, vol. 71(2), pages 267-294.
    10. Ogasawara, Haruhiko, 2007. "Asymptotic expansions of the distributions of estimators in canonical correlation analysis under nonnormality," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1726-1750, October.
    11. Jacques Dauxois & Guy Nkiet & Yves Romain, 2004. "Linear relative canonical analysis of Euclidean random variables, asymptotic study and some applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 279-304, June.
    12. Haruhiko Ogasawara, 2009. "Asymptotic expansions in the singular value decomposition for cross covariance and correlation under nonnormality," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 995-1017, December.
    13. Yamada, Tomoya, 2013. "Asymptotic properties of canonical correlation analysis for one group with additional observations," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 389-401.
    14. Engle, Robert F. & Marcucci, Juri, 2006. "A long-run Pure Variance Common Features model for the common volatilities of the Dow Jones," Journal of Econometrics, Elsevier, vol. 132(1), pages 7-42, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:70:y:1999:i:1:p:1-29. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.