IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v64y2023i6d10.1007_s00362-022-01355-3.html
   My bibliography  Save this article

Improved shrinkage estimators in the beta regression model with application in econometric and educational data

Author

Listed:
  • Reza Arabi Belaghi

    (Uppsala University
    University of Tabriz)

  • Yasin Asar

    (Necmettin Erbakan University)

  • Rolf Larsson

    (Uppsala University)

Abstract

Although beta regression is a very useful tool to model the continuous bounded outcome variable with some explanatory variables, however, in the presence of multicollinearity, the performance of the maximum likelihood estimates for the estimation of the parameters is poor. In this paper, we propose improved shrinkage estimators via Liu estimator to obtain more efficient estimates. Therefore, we defined linear shrinkage, pretest, shrinkage pretest, Stein and positive part Stein estimators to estimate of the parameters in the beta regression model, when some of them have not a significant effect to predict the outcome variable so that a sub-model may be sufficient. We derived the asymptotic distributional biases, variances, and then we conducted extensive Monte Carlo simulation study to obtain the performance of the proposed estimation strategy. Our results showed a great benefit of the new methodologies for practitioners specifically in the applied sciences. We concluded the paper with two real data analysis from economics and education.

Suggested Citation

  • Reza Arabi Belaghi & Yasin Asar & Rolf Larsson, 2023. "Improved shrinkage estimators in the beta regression model with application in econometric and educational data," Statistical Papers, Springer, vol. 64(6), pages 1891-1912, December.
  • Handle: RePEc:spr:stpapr:v:64:y:2023:i:6:d:10.1007_s00362-022-01355-3
    DOI: 10.1007/s00362-022-01355-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01355-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01355-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    2. Shakhawat Hossain & Trevor Thomson & Ejaz Ahmed, 2018. "Shrinkage estimation in linear mixed models for longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 569-586, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    2. Yayan Hernuryadin & Koji Kotani & Tatsuyoshi Saijo, 2020. "Time Preferences of Food Producers: Does “Cultivate and Grow” Matter?," Land Economics, University of Wisconsin Press, vol. 96(1), pages 132-148.
    3. Ben Salah, Mhamed & Chambru, Cédric & Fourati, Maleke, 2024. "The colonial legacy of education: Evidence from Tunisia," Journal of Comparative Economics, Elsevier, vol. 52(4), pages 773-792.
    4. Ameztegui, Aitor & Coll, Lluís & Messier, Christian, 2015. "Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones," Ecological Modelling, Elsevier, vol. 313(C), pages 84-93.
    5. Sokolova, Maria V., 2016. "Exchange Rates, International Trade and Growth: Re-Evaluation of Undervaluation," Conference papers 332790, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    7. Dries P.J. Kuijper & Jakub W. Bubnicki & Marcin Churski & Bjorn Mols & Pim van Hooft, 2015. "Context dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(6), pages 1558-1568.
    8. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    9. Sahoo, Dukhabandhu & Mohanty, Pritisudha & Mishra, Surbhi & Behera, Manash & Mohapatra, Souryabrata, 2024. "Does climate-smart agriculture technology improve the subjective well-being of farmers? Evidence from micro-level data," MPRA Paper 123955, University Library of Munich, Germany.
    10. Akoh Fabien Yao & Maxime Sèbe & Laura Recuero Virto & Abdelhak Nassiri & Hervé Dumez, 2024. "The effect of LNG bunkering on port competitiveness using multilevel data analysis [L'effet du soutage par GNL sur la compétitivité des ports à l'aide de l'analyse de données à plusieurs niveaux]," Post-Print hal-04611804, HAL.
    11. Qin Ma & Yanjun Su & Chunyue Niu & Qin Ma & Tianyu Hu & Xiangzhong Luo & Xiaonan Tai & Tong Qiu & Yao Zhang & Roger C. Bales & Lingli Liu & Maggi Kelly & Qinghua Guo, 2023. "Tree mortality during long-term droughts is lower in structurally complex forest stands," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Maria De Paola & Vincenzo Scoppa, 2012. "The Causal Impact Of Closeness On Electoral Participation Exploiting The Italian Dual Ballot System," Working Papers 201203, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    13. Piotr Archiciński & Arkadiusz Przybysz & Daria Sikorska & Marzena Wińska-Krysiak & Anderson Rodrigo Da Silva & Piotr Sikorski, 2024. "Conservation Management Practices for Biodiversity Preservation in Urban Informal Green Spaces: Lessons from Central European City," Land, MDPI, vol. 13(6), pages 1-22, May.
    14. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    15. Zeileis, Achim, 2006. "Implementing a class of structural change tests: An econometric computing approach," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 2987-3008, July.
    16. Zhang, Dengjun & Xie, Yifan, 2022. "Customer environmental concerns and profit margin: Evidence from manufacturing firms," Journal of Economics and Business, Elsevier, vol. 120(C).
    17. Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
    18. Benjamin Michallet & Giuseppe Lucio Gaeta & François Facchini, 2015. "Greening Up or Not? The Determinants Political Parties’ Environmental Concern: An Empirical Analysis Based on European Data (1970-2008)," Working Papers 2015.25, Fondazione Eni Enrico Mattei.
    19. Petridis, Konstantinos & Tampakoudis, Ioannis & Drogalas, George & Kiosses, Nikolaos, 2022. "A Support Vector Machine model for classification of efficiency: An application to M&A," Research in International Business and Finance, Elsevier, vol. 61(C).
    20. Wanke, Peter & Barros, C.P. & Figueiredo, Otávio, 2016. "Efficiency and productive slacks in urban transportation modes: A two-stage SDEA-Beta Regression approach," Utilities Policy, Elsevier, vol. 41(C), pages 31-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:6:d:10.1007_s00362-022-01355-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.