IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v58y2017i2d10.1007_s00362-015-0703-1.html
   My bibliography  Save this article

A comprehensive extension of the FGM copula

Author

Listed:
  • Werner Hürlimann

Abstract

We consider one-parametric families of copulas for which the complement function for independence satisfies an anti-symmetric property. The Spearman rank correlation and Kendall’s tau of an anti-symmetric family of copulas are necessarily odd functions of the parameter. Extending the parameter range of the FGM copula to the whole real line and truncated it from above and below using the Hoeffding-Fréchet bounds generates a comprehensive anti-symmetric extension of the FGM copula. The detailed analytical representation of the extended FGM copula, the absolutely continuous and singular components, as well as the Spearman rank correlation and Kendall’s tau dependence functions are derived. Several additional examples illustrate the anti-symmetric copula construction.

Suggested Citation

  • Werner Hürlimann, 2017. "A comprehensive extension of the FGM copula," Statistical Papers, Springer, vol. 58(2), pages 373-392, June.
  • Handle: RePEc:spr:stpapr:v:58:y:2017:i:2:d:10.1007_s00362-015-0703-1
    DOI: 10.1007/s00362-015-0703-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-015-0703-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-015-0703-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    2. Azam Dehgani & Ali Dolati & Manuel Úbeda-Flores, 2013. "Measures of radial asymmetry for bivariate random vectors," Statistical Papers, Springer, vol. 54(2), pages 271-286, May.
    3. Christian Genest & Johanna Nešlehová, 2014. "On tests of radial symmetry for bivariate copulas," Statistical Papers, Springer, vol. 55(4), pages 1107-1119, November.
    4. Roger Nelsen, 2007. "Extremes of nonexchangeability," Statistical Papers, Springer, vol. 48(4), pages 695-695, October.
    5. Fabrizio Durante, 2009. "Construction of non-exchangeable bivariate distribution functions," Statistical Papers, Springer, vol. 50(2), pages 383-391, March.
    6. Cécile Amblard & Stéphane Girard, 2009. "A new extension of bivariate FGM copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 1-17, June.
    7. Lai, C. D. & Xie, M., 2000. "A new family of positive quadrant dependent bivariate distributions," Statistics & Probability Letters, Elsevier, vol. 46(4), pages 359-364, February.
    8. Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2004. "A new class of bivariate copulas," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 315-325, February.
    9. Christian Genest & Johanna Nešlehová & Jean-François Quessy, 2012. "Tests of symmetry for bivariate copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 811-834, August.
    10. J. Rosco & Harry Joe, 2013. "Measures of tail asymmetry for bivariate copulas," Statistical Papers, Springer, vol. 54(3), pages 709-726, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    2. Beare, Brendan K. & Seo, Juwon, 2020. "Randomization Tests Of Copula Symmetry," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1025-1063, December.
    3. Azam Dehgani & Ali Dolati & Manuel Úbeda-Flores, 2013. "Measures of radial asymmetry for bivariate random vectors," Statistical Papers, Springer, vol. 54(2), pages 271-286, May.
    4. Saminger-Platz Susanne & Kolesárová Anna & Šeliga Adam & Mesiar Radko & Klement Erich Peter, 2021. "New results on perturbation-based copulas," Dependence Modeling, De Gruyter, vol. 9(1), pages 347-373, January.
    5. Tarik Bahraoui & Nikolai Kolev, 2021. "New Measure of the Bivariate Asymmetry," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 421-448, February.
    6. Christian Genest & Johanna Nešlehová, 2014. "On tests of radial symmetry for bivariate copulas," Statistical Papers, Springer, vol. 55(4), pages 1107-1119, November.
    7. Arbel, Julyan & Crispino, Marta & Girard, Stéphane, 2019. "Dependence properties and Bayesian inference for asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    8. Shogo Kato & Toshinao Yoshiba & Shinto Eguchi, 2022. "Copula-based measures of asymmetry between the lower and upper tail probabilities," Statistical Papers, Springer, vol. 63(6), pages 1907-1929, December.
    9. Monica Billio & Lorenzo Frattarolo & Dominique Guégan, 2022. "High-Dimensional Radial Symmetry of Copula Functions: Multiplier Bootstrap vs. Randomization," Post-Print hal-04085236, HAL.
    10. Billio Monica & Frattarolo Lorenzo & Guégan Dominique, 2021. "Multivariate radial symmetry of copula functions: finite sample comparison in the i.i.d case," Dependence Modeling, De Gruyter, vol. 9(1), pages 43-61, January.
    11. Hakim Bekrizadeh & Babak Jamshidi, 2017. "A new class of bivariate copulas: dependence measures and properties," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 31-50, April.
    12. Hua, Lei & Polansky, Alan & Pramanik, Paramahansa, 2019. "Assessing bivariate tail non-exchangeable dependence," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    13. Mangold, Benedikt, 2017. "New concepts of symmetry for copulas," FAU Discussion Papers in Economics 06/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics, revised 2017.
    14. Quessy Jean-François & Bahraoui Tarik, 2018. "Testing the symmetry of a dependence structure with a characteristic function," Dependence Modeling, De Gruyter, vol. 6(1), pages 331-355, December.
    15. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    16. Quessy, Jean-François, 2021. "A Szekely–Rizzo inequality for testing general copula homogeneity hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    17. J. Rosco & Harry Joe, 2013. "Measures of tail asymmetry for bivariate copulas," Statistical Papers, Springer, vol. 54(3), pages 709-726, August.
    18. Miriam Jaser & Aleksey Min, 2021. "On tests for symmetry and radial symmetry of bivariate copulas towards testing for ellipticity," Computational Statistics, Springer, vol. 36(3), pages 1-26, September.
    19. Papini Pier Luigi, 2015. "Bivariate copulas, norms and non-exchangeability," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-7, November.
    20. Jia-Han Shih & Takeshi Emura, 2019. "Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula," Statistical Papers, Springer, vol. 60(4), pages 1101-1118, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:58:y:2017:i:2:d:10.1007_s00362-015-0703-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.