IDEAS home Printed from
   My bibliography  Save this article

A new family of positive quadrant dependent bivariate distributions


  • Lai, C. D.
  • Xie, M.


Positive quadrant dependence (PQD) is a notion of bivariate dependence between two positively dependent random variables. Starting from the uniform representation of the Farlie-Gumbel-Morgenstern bivariate distribution, we derive and study a family of continuous bivariate distributions that possesses the PQD property. In particular, we show that this new parametric family of distributions can be ordered in the so-called "PQD order".

Suggested Citation

  • Lai, C. D. & Xie, M., 2000. "A new family of positive quadrant dependent bivariate distributions," Statistics & Probability Letters, Elsevier, vol. 46(4), pages 359-364, February.
  • Handle: RePEc:eee:stapro:v:46:y:2000:i:4:p:359-364

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Nelsen, Roger B., 1992. "On measures of association as measures of positive dependence," Statistics & Probability Letters, Elsevier, vol. 14(4), pages 269-274, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bairamov, I. & Bayramoglu, K., 2013. "From the Huang–Kotz FGM distribution to Baker’s bivariate distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 106-115.
    2. Arjun Gupta & Johanna Orozco-Castañeda & Daya Nagar, 2011. "Non-central bivariate beta distribution," Statistical Papers, Springer, vol. 52(1), pages 139-152, February.
    3. Cerqueti, Roy & Costantini, Mauro & Lupi, Claudio, 2012. "A copula-based analysis of false discovery rate control under dependence assumptions," Economics & Statistics Discussion Papers esdp12065, University of Molise, Dept. EGSeI.
    4. I. Bairamov & S. Kotz & M. Bekci, 2001. "New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(5), pages 521-536.
    5. Lin, G.D. & Huang, J.S., 2010. "A note on the maximum correlation for Baker's bivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2227-2233, October.
    6. Fischer, Matthias J. & Klein, Ingo, 2004. "Constructing symmetric generalized FGM copulas by means of certain univariate distributions," Discussion Papers 61/2004, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    7. Cuadras, Carles M. & Cuadras, Daniel, 2008. "Eigenanalysis on a bivariate covariance kernel," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2497-2507, November.
    8. repec:spr:stpapr:v:58:y:2017:i:2:d:10.1007_s00362-015-0703-1 is not listed on IDEAS
    9. Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2004. "A new class of bivariate copulas," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 315-325, February.
    10. Mao, Tiantian & Yang, Fan, 2015. "Risk concentration based on Expectiles for extreme risks under FGM copula," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 429-439.
    11. Hakim Bekrizadeh & Babak Jamshidi, 2017. "A new class of bivariate copulas: dependence measures and properties," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 31-50, April.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:46:y:2000:i:4:p:359-364. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.