IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v55y2014i3p671-690.html
   My bibliography  Save this article

Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions

Author

Listed:
  • Camila Zeller
  • Victor Lachos
  • Filidor Labra

Abstract

Grubbs’s model (Grubbs, Encycl Stat Sci 3:42–549, 1983 ) is used for comparing several measuring devices, and it is common to assume that the random terms have a normal (or symmetric) distribution. In this paper, we discuss the extension of this model to the class of scale mixtures of skew-normal distributions. Our results provide a useful generalization of the symmetric Grubbs’s model (Osorio et al., Comput Stat Data Anal, 53:1249–1263, 2009 ) and the asymmetric skew-normal model (Montenegro et al., Stat Pap 51:701–715, 2010 ). We discuss the EM algorithm for parameter estimation and the local influence method (Cook, J Royal Stat Soc Ser B, 48:133–169, 1986 ) for assessing the robustness of these parameter estimates under some usual perturbation schemes. The results and methods developed in this paper are illustrated with a numerical example. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Camila Zeller & Victor Lachos & Filidor Labra, 2014. "Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions," Statistical Papers, Springer, vol. 55(3), pages 671-690, August.
  • Handle: RePEc:spr:stpapr:v:55:y:2014:i:3:p:671-690
    DOI: 10.1007/s00362-013-0519-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-013-0519-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-013-0519-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lourdes Montenegro & Víctor Lachos & Heleno Bolfarine, 2010. "Inference for a skew extension of the Grubbs model," Statistical Papers, Springer, vol. 51(3), pages 701-715, September.
    2. de Castro, Mario & Galea-Rojas, Manuel & Bolfarine, Heleno, 2007. "Local influence assessment in heteroscedastic measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1132-1142, October.
    3. Hong‐Tu Zhu & Sik‐Yum Lee, 2001. "Local influence for incomplete data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 111-126.
    4. Cao, Chun-Zheng & Lin, Jin-Guan & Zhu, Xiao-Xin, 2012. "On estimation of a heteroscedastic measurement error model under heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 438-448.
    5. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    6. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    7. Víctor Lachos & Filidor Vilca & Manuel Galea, 2007. "Influence diagnostics for the Grubbs's model," Statistical Papers, Springer, vol. 48(3), pages 419-436, September.
    8. Lounasheimo, Antton, 1999. "The Impact of Human Capital on Economic Growth," Discussion Papers 673, The Research Institute of the Finnish Economy.
    9. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2009. "On estimation and influence diagnostics for the Grubbs' model under heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1249-1263, February.
    10. Lee, Sik-Yum & Xu, Liang, 2004. "Influence analyses of nonlinear mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 321-341, March.
    11. C. B. Zeller & V. H. Lachos & F. E. Vilca-Labra, 2011. "Local influence analysis for regression models with scale mixtures of skew-normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 343-368, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaowen Dai & Libin Jin & Maozai Tian & Lei Shi, 2019. "Bayesian Local Influence for Spatial Autoregressive Models with Heteroscedasticity," Statistical Papers, Springer, vol. 60(5), pages 1423-1446, October.
    2. Chunzheng Cao & Mengqian Chen & Yahui Wang & Jian Qing Shi, 2018. "Heteroscedastic replicated measurement error models under asymmetric heavy-tailed distributions," Computational Statistics, Springer, vol. 33(1), pages 319-338, March.
    3. Zeinolabedin Najafi & Karim Zare & Mohammad Reza Mahmoudi & Soheil Shokri & Amir Mosavi, 2022. "Inference and Local Influence Assessment in a Multifactor Skew-Normal Linear Mixed Model," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
    4. Ye Tian & Yasunari Yokota, 2019. "Estimating the Major Cluster by Mean-Shift with Updating Kernel," Mathematics, MDPI, vol. 7(9), pages 1-25, August.
    5. Chunzheng Cao & Yahui Wang & Jian Qing Shi & Jinguan Lin, 2018. "Measurement Error Models for Replicated Data Under Asymmetric Heavy-Tailed Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 531-553, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camila Zeller & Rignaldo Carvalho & Victor Lachos, 2012. "On diagnostics in multivariate measurement error models under asymmetric heavy-tailed distributions," Statistical Papers, Springer, vol. 53(3), pages 665-683, August.
    2. Chunzheng Cao & Mengqian Chen & Yahui Wang & Jian Qing Shi, 2018. "Heteroscedastic replicated measurement error models under asymmetric heavy-tailed distributions," Computational Statistics, Springer, vol. 33(1), pages 319-338, March.
    3. Chunzheng Cao & Yahui Wang & Jian Qing Shi & Jinguan Lin, 2018. "Measurement Error Models for Replicated Data Under Asymmetric Heavy-Tailed Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 531-553, August.
    4. Patricia Giménez & María Patat, 2014. "Local influence for functional comparative calibration models with replicated data," Statistical Papers, Springer, vol. 55(2), pages 431-454, May.
    5. Graciliano M. S. Louredo & Camila B. Zeller & Clécio S. Ferreira, 2022. "Estimation and Influence Diagnostics for the Multivariate Linear Regression Models with Skew Scale Mixtures of Normal Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 204-242, May.
    6. Zeller, Camila B. & Labra, Filidor V. & Lachos, Victor H. & Balakrishnan, N., 2010. "Influence analyses of skew-normal/independent linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1266-1280, May.
    7. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2009. "On estimation and influence diagnostics for the Grubbs' model under heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1249-1263, February.
    8. Baishuai Zuo & Narayanaswamy Balakrishnan & Chuancun Yin, 2023. "An analysis of multivariate measures of skewness and kurtosis of skew-elliptical distributions," Papers 2311.18176, arXiv.org.
    9. Zeinolabedin Najafi & Karim Zare & Mohammad Reza Mahmoudi & Soheil Shokri & Amir Mosavi, 2022. "Inference and Local Influence Assessment in a Multifactor Skew-Normal Linear Mixed Model," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
    10. Giménez, Patricia & Galea, Manuel, 2013. "Influence measures on corrected score estimators in functional heteroscedastic measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 1-15.
    11. Matos, Larissa A. & Lachos, Victor H. & Balakrishnan, N. & Labra, Filidor V., 2013. "Influence diagnostics in linear and nonlinear mixed-effects models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 450-464.
    12. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    13. Clécio S. Ferreira & Gilberto A. Paula, 2017. "Estimation and diagnostic for skew-normal partially linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 3033-3053, December.
    14. Russo, Cibele M. & Paula, Gilberto A. & Aoki, Reiko, 2009. "Influence diagnostics in nonlinear mixed-effects elliptical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4143-4156, October.
    15. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    16. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    17. Anna Gottard & Simona Pacillo, 2007. "On the impact of contaminations in graphical Gaussian models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 343-354, February.
    18. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
    19. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    20. Azzalini, Adelchi & Browne, Ryan P. & Genton, Marc G. & McNicholas, Paul D., 2016. "On nomenclature for, and the relative merits of, two formulations of skew distributions," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 201-206.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:55:y:2014:i:3:p:671-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.