IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v110y2016icp201-206.html
   My bibliography  Save this article

On nomenclature for, and the relative merits of, two formulations of skew distributions

Author

Listed:
  • Azzalini, Adelchi
  • Browne, Ryan P.
  • Genton, Marc G.
  • McNicholas, Paul D.

Abstract

We examine some skew distributions used extensively within the model-based clustering literature in recent years, paying special attention to claims that have been made about their relative efficacy. Theoretical arguments are provided as well as real data examples.

Suggested Citation

  • Azzalini, Adelchi & Browne, Ryan P. & Genton, Marc G. & McNicholas, Paul D., 2016. "On nomenclature for, and the relative merits of, two formulations of skew distributions," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 201-206.
  • Handle: RePEc:eee:stapro:v:110:y:2016:i:c:p:201-206
    DOI: 10.1016/j.spl.2015.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215303813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McLachlan, Geoff & Lee, Sharon X, 2013. "EMMIXuskew: An R Package for Fitting Mixtures of Multivariate Skew t Distributions via the EM Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i12).
    2. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    3. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    4. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    5. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    6. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "Hidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clustering," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 141-156.
    2. Murray, Paula M. & Browne, Ryan P. & McNicholas, Paul D., 2017. "A mixture of SDB skew-t factor analyzers," Econometrics and Statistics, Elsevier, vol. 3(C), pages 160-168.
    3. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    4. Wan-Lun Wang & Luis M. Castro & Yen-Ting Chang & Tsung-I Lin, 2019. "Mixtures of restricted skew-t factor analyzers with common factor loadings," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 445-480, June.
    5. Md Faridur Rahman & Md. Shamim Talukder & Yang Lanrong & Abul Khayer, 2020. "Why do citizens use e-tax system?:Extending the technology continuance theory," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 9(7), pages 177-189, December.
    6. Cristina Tortora & Brian C. Franczak & Ryan P. Browne & Paul D. McNicholas, 2019. "A Mixture of Coalesced Generalized Hyperbolic Distributions," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 26-57, April.
    7. McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Comment on “On nomenclature, and the relative merits of two formulations of skew distributions” by A. Azzalini, R. Browne, M. Genton, and P. McNicholas," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 1-5.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Comment on “On nomenclature, and the relative merits of two formulations of skew distributions” by A. Azzalini, R. Browne, M. Genton, and P. McNicholas," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 1-5.
    2. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    3. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    4. Shushi, Tomer, 2018. "A proof for the existence of multivariate singular generalized skew-elliptical density functions," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 50-55.
    5. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    6. Adelchi Azzalini, 2012. "Selection models under generalized symmetry settings," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 737-750, August.
    7. Wang, Sheng & Zimmerman, Dale L. & Breheny, Patrick, 2020. "Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    8. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    9. Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    10. Abe, Toshihiro & Fujisawa, Hironori & Kawashima, Takayuki & Ley, Christophe, 2021. "EM algorithm using overparameterization for the multivariate skew-normal distribution," Econometrics and Statistics, Elsevier, vol. 19(C), pages 151-168.
    11. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2013. "The centred parameterization and related quantities of the skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 73-90.
    12. Antonio Canale & Euloge Clovis Kenne Pagui & Bruno Scarpa, 2016. "Bayesian modeling of university first-year students' grades after placement test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3015-3029, December.
    13. Jorge M. Arevalillo & Hilario Navarro, 2021. "Skewness-Kurtosis Model-Based Projection Pursuit with Application to Summarizing Gene Expression Data," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    14. Giorgi, Emanuele & McNeil, Alexander J., 2016. "On the computation of multivariate scenario sets for the skew-t and generalized hyperbolic families," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 205-220.
    15. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    16. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    17. Wang, Wan-Lun, 2013. "Mixtures of common factor analyzers for high-dimensional data with missing information," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 120-133.
    18. V. G. Cancho & Reiko Aoki & V. H. Lachos, 2008. "Bayesian analysis for a skew extension of the multivariate null intercept measurement error model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(11), pages 1239-1251.
    19. Arevalillo, Jorge M. & Navarro, Hilario, 2015. "A note on the direction maximizing skewness in multivariate skew-t vectors," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 328-332.
    20. Kim, Hyoung-Moon & Maadooliat, Mehdi & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2016. "Skewed factor models using selection mechanisms," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 162-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:110:y:2016:i:c:p:201-206. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.