IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2820-d883339.html
   My bibliography  Save this article

Inference and Local Influence Assessment in a Multifactor Skew-Normal Linear Mixed Model

Author

Listed:
  • Zeinolabedin Najafi

    (Department of Statistics, Marvdasht Branch, Islamic Azad University, Marvdasht 73711-13119, Iran)

  • Karim Zare

    (Department of Statistics, Marvdasht Branch, Islamic Azad University, Marvdasht 73711-13119, Iran
    These authors contributed equally to this work.)

  • Mohammad Reza Mahmoudi

    (Department of Statistics, Faculty of Science, Fasa University, Fasa 74616-86131, Iran
    These authors contributed equally to this work.)

  • Soheil Shokri

    (Department of Statistics, Lahijan Branch, Islamic Azad University, Lahijan 44169-39515, Iran)

  • Amir Mosavi

    (Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany
    John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary
    Institute of Information Society, University of Public Service, 1083 Budapest, Hungary
    Institute of Information Engineering, Automation and Mathematics, Slovak University of Technology in Bratislava, 81243 Bratislava, Slovakia)

Abstract

This work considers a multifactor linear mixed model under heteroscedasticity in random-effect factors and the skew-normal errors for modeling the correlated datasets. We implement an expectation–maximization (EM) algorithm to achieve the maximum likelihood estimates using conditional distributions of the skew-normal distribution. The EM algorithm is also implemented to extend the local influence approach under three model perturbation schemes in this model. Furthermore, a Monte Carlo simulation is conducted to evaluate the efficiency of the estimators. Finally, a real data set is used to make an illustrative comparison among the following four scenarios: normal/skew-normal errors and heteroscedasticity/homoscedasticity in random-effect factors. The empirical studies show our methodology can improve the estimates when the model errors follow from a skew-normal distribution. In addition, the local influence analysis indicates that our model can decrease the effects of anomalous observations in comparison to normal ones.

Suggested Citation

  • Zeinolabedin Najafi & Karim Zare & Mohammad Reza Mahmoudi & Soheil Shokri & Amir Mosavi, 2022. "Inference and Local Influence Assessment in a Multifactor Skew-Normal Linear Mixed Model," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2820-:d:883339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kheradmandi, Ameneh & Rasekh, Abdolrahman, 2015. "Estimation in skew-normal linear mixed measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 1-11.
    2. Mi-Xia Wu & Kai-Fun Yu & Aiyi Liu & Tie-Feng Ma, 2012. "Simultaneous optimal estimation in linear mixed models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(4), pages 471-489, May.
    3. Verbeke, Geert & Lesaffre, Emmanuel, 1997. "The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 541-556, February.
    4. Mohsen Maleki & Darren Wraith & Reinaldo B. Arellano-Valle, 2019. "A flexible class of parametric distributions for Bayesian linear mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 543-564, June.
    5. Hong‐Tu Zhu & Sik‐Yum Lee, 2001. "Local influence for incomplete data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 111-126.
    6. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    7. Zeller, Camila B. & Labra, Filidor V. & Lachos, Victor H. & Balakrishnan, N., 2010. "Influence analyses of skew-normal/independent linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1266-1280, May.
    8. Camila Zeller & Victor Lachos & Filidor Labra, 2014. "Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions," Statistical Papers, Springer, vol. 55(3), pages 671-690, August.
    9. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    10. Wendimagegn Ghidey & Emmanuel Lesaffre & Paul Eilers, 2004. "Smooth Random Effects Distribution in a Linear Mixed Model," Biometrics, The International Biometric Society, vol. 60(4), pages 945-953, December.
    11. Huageng Tao & Mari Palta & Brian S. Yandell & Michael A. Newton, 1999. "An Estimation Method for the Semiparametric Mixed Effects Model," Biometrics, The International Biometric Society, vol. 55(1), pages 102-110, March.
    12. Yuanyuan Ju & Yan Yang & Mingxing Hu & Lin Dai & Liucang Wu, 2022. "Bayesian Influence Analysis of the Skew-Normal Spatial Autoregression Models," Mathematics, MDPI, vol. 10(8), pages 1-19, April.
    13. Lu, Bin & Song, Xin-Yuan, 2006. "Local influence analysis of multivariate probit latent variable models," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1783-1798, September.
    14. Daowen Zhang & Marie Davidian, 2001. "Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data," Biometrics, The International Biometric Society, vol. 57(3), pages 795-802, September.
    15. Lee, Sik-Yum & Xu, Liang, 2004. "Influence analyses of nonlinear mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 321-341, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul R. Dewick & Shuangzhe Liu & Yonghui Liu & Tiefeng Ma, 2023. "Elliptical and Skew-Elliptical Regression Models and Their Applications to Financial Data Analytics," JRFM, MDPI, vol. 16(7), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rendao Ye & Tonghui Wang & Saowanit Sukparungsee & Arjun Gupta, 2015. "Tests in variance components models under skew-normal settings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 885-904, October.
    2. Zeller, Camila B. & Labra, Filidor V. & Lachos, Victor H. & Balakrishnan, N., 2010. "Influence analyses of skew-normal/independent linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1266-1280, May.
    3. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    4. Jara, Alejandro & Quintana, Fernando & San Marti­n, Ernesto, 2008. "Linear mixed models with skew-elliptical distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 5033-5045, July.
    5. Clécio S. Ferreira & Gilberto A. Paula, 2017. "Estimation and diagnostic for skew-normal partially linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 3033-3053, December.
    6. Ho, Remus K.W. & Hu, Inchi, 2008. "Flexible modelling of random effects in linear mixed models--A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1347-1361, January.
    7. Peng Zhang & Peter X.-K. Song & Annie Qu & Tom Greene, 2008. "Efficient Estimation for Patient-Specific Rates of Disease Progression Using Nonnormal Linear Mixed Models," Biometrics, The International Biometric Society, vol. 64(1), pages 29-38, March.
    8. Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
    9. Matos, Larissa A. & Bandyopadhyay, Dipankar & Castro, Luis M. & Lachos, Victor H., 2015. "Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 104-117.
    10. Clécio da Silva Ferreira & Gilberto A. Paula & Gustavo C. Lana, 2022. "Estimation and diagnostic for partially linear models with first-order autoregressive skew-normal errors," Computational Statistics, Springer, vol. 37(1), pages 445-468, March.
    11. Camila Zeller & Victor Lachos & Filidor Labra, 2014. "Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions," Statistical Papers, Springer, vol. 55(3), pages 671-690, August.
    12. F. Kahrari & C. S. Ferreira & R. B. Arellano-Valle, 2019. "Skew-Normal-Cauchy Linear Mixed Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 185-202, December.
    13. Reyhaneh Rikhtehgaran & Iraj Kazemi, 2013. "Semi-parametric Bayesian estimation of mixed-effects models using the multivariate skew-normal distribution," Computational Statistics, Springer, vol. 28(5), pages 2007-2027, October.
    14. Vasconcellos, Klaus L.P. & Zea Fernandez, L.M., 2009. "Influence analysis with homogeneous linear restrictions," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3787-3794, September.
    15. Xiao Song & Marie Davidian & Anastasios A. Tsiatis, 2002. "A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 58(4), pages 742-753, December.
    16. Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
    17. Huang, Pei & McCarl, Bruce A., 2014. "Estimating Decadal Climate Variability Effects on Crop Yields: A Bayesian Hierarchical Approach," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169828, Agricultural and Applied Economics Association.
    18. Wendimagegn Ghidey & Emmanuel Lesaffre & Paul Eilers, 2004. "Smooth Random Effects Distribution in a Linear Mixed Model," Biometrics, The International Biometric Society, vol. 60(4), pages 945-953, December.
    19. Vock, David & Davidian, Marie & Tsiatis, Anastasios, 2014. "SNP_NLMM: A SAS Macro to Implement a Flexible Random Effects Density for Generalized Linear and Nonlinear Mixed Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(c02).
    20. Soberón, Alexandra & Stute, Winfried, 2017. "Assessing skewness, kurtosis and normality in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 123-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2820-:d:883339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.