IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Local influence analysis of multivariate probit latent variable models

Listed author(s):
  • Lu, Bin
  • Song, Xin-Yuan
Registered author(s):

    The multivariate probit model is very useful for analyzing correlated multivariate dichotomous data. Recently, this model has been generalized with a confirmatory factor analysis structure for accommodating more general covariance structure, and it is called the MPCFA model. The main purpose of this paper is to consider local influence analysis, which is a well-recognized important step of data analysis beyond the maximum likelihood estimation, of the MPCFA model. As the observed-data likelihood associated with the MPCFA model is intractable, the famous Cook's approach cannot be applied to achieve local influence measures. Hence, the local influence measures are developed via Zhu and Lee's [Local influence for incomplete data model, J. Roy. Statist. Soc. Ser. B 63 (2001) 111-126.] approach that is closely related to the EM algorithm. The diagnostic measures are derived from the conformal normal curvature of an appropriate function. The building blocks are computed via a sufficiently large random sample of the latent response strengths and latent variables that are generated by the Gibbs sampler. Some useful perturbation schemes are discussed. Results that are obtained from analyses of an artificial example and a real example are presented to illustrate the newly developed methodology.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 97 (2006)
    Issue (Month): 8 (September)
    Pages: 1783-1798

    in new window

    Handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1783-1798
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    2. Hong-Tu Zhu & Sik-Yum Lee, 2001. "Local influence for incomplete data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 111-126.
    3. Sik-Yum Lee & Nian-Sheng Tang, 2004. "Local influence analysis of nonlinear structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 573-592, December.
    4. Sik-Yum Lee & Liang Xu, 2003. "On local influence analysis of full information item factor models," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 339-360, September.
    5. Wai-Yin Poon & Shu-Jia Wang & Sik-Yum Lee, 1999. "Influence analysis of structural equation models with polytomous variables," Psychometrika, Springer;The Psychometric Society, vol. 64(4), pages 461-473, December.
    6. Sik-Yum Lee & S. Wang, 1996. "Sensitivity analysis of structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 93-108, March.
    7. Yutaka Tanaka & Yoshimasa Odaka, 1989. "Influential observations in principal factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 54(3), pages 475-485, September.
    8. W.-Y. Poon & Y. S. Poon, 1999. "Conformal normal curvature and assessment of local influence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 51-61.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1783-1798. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.