IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v33y2024i5d10.1007_s10260-024-00766-w.html
   My bibliography  Save this article

A finite mixture approach for the analysis of digital skills in Bulgaria, Finland and Italy: the role of socio-economic factors

Author

Listed:
  • Dalila Failli

    (Università degli Studi di Firenze)

  • Bruno Arpino

    (Università degli Studi di Padova)

  • Maria Francesca Marino

    (Università degli Studi di Firenze)

Abstract

The digital divide is the gap among population sub-groups in accessing and/or using digital technologies. Typically, older people show a lower propensity to have a broadband connection, use the Internet, and adopt new technologies than the younger ones. Motivated by the analysis of the heterogeneity in the use of digital technologies, we build a bipartite network concerning the presence of various digital skills in individuals from three different European countries: Bulgaria, Finland, and Italy. Bipartite networks provide a useful structure for representing relationships between two disjoint sets of nodes, formally called sending and receiving nodes. The goal is to perform a clustering of individuals (sending nodes) from each country based on their digital skills (receiving nodes). In this regard, we employ a Mixture of Latent Trait Analyzers (MLTA) with concomitant variables, which allows us to (i) cluster individuals according to their profile; (ii) analyze how socio-economic and demographic characteristics, as well as intergenerational ties, influence individual digitalization. Results show that the type of digitalization substantially depends on age, income and level of education, while the presence of children in the household seems to play an important role in the digitalization process in Italy and Finland only.

Suggested Citation

  • Dalila Failli & Bruno Arpino & Maria Francesca Marino, 2024. "A finite mixture approach for the analysis of digital skills in Bulgaria, Finland and Italy: the role of socio-economic factors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(5), pages 1483-1511, November.
  • Handle: RePEc:spr:stmapp:v:33:y:2024:i:5:d:10.1007_s10260-024-00766-w
    DOI: 10.1007/s10260-024-00766-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-024-00766-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-024-00766-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anca Elena-Bucea & Frederico Cruz-Jesus & Tiago Oliveira & Pedro Simões Coelho, 2021. "Assessing the Role of Age, Education, Gender and Income on the Digital Divide: Evidence for the European Union," Information Systems Frontiers, Springer, vol. 23(4), pages 1007-1021, August.
    2. Bruno Arpino & Marta Pasqualini & Valeria Bordone, 2021. "Physically distant but socially close? Changes in non-physical intergenerational contacts at the onset of the COVID-19 pandemic among older people in France, Italy and Spain," European Journal of Ageing, Springer, vol. 18(2), pages 185-194, June.
    3. Murray Aitkin & Duy Vu & Brian Francis, 2017. "Statistical modelling of a terrorist network," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 751-768, June.
    4. Marino, Maria Francesca & Pandolfi, Silvia, 2022. "Hybrid maximum likelihood inference for stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    5. Oliver Huxhold & Elena Hees & Noah J. Webster, 2020. "Towards bridging the grey digital divide: changes in internet access and its predictors from 2002 to 2014 in Germany," European Journal of Ageing, Springer, vol. 17(3), pages 271-280, September.
    6. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    7. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    8. Bartolucci, Francesco & Marino, Maria Francesca & Pandolfi, Silvia, 2018. "Dealing with reciprocity in dynamic stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 86-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danilo Cavapozzi & Chiara Dal Bianco, 2022. "Does retirement reduce familiarity with Information and Communication Technology?," Review of Economics of the Household, Springer, vol. 20(2), pages 553-577, June.
    2. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    3. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    4. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    5. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    6. Zahoor, Nadia & Zopiatis, Anastasios & Adomako, Samuel & Lamprinakos, Grigorios, 2023. "The micro-foundations of digitally transforming SMEs: How digital literacy and technology interact with managerial attributes," Journal of Business Research, Elsevier, vol. 159(C).
    7. Marc A. Scott & Kaushik Mohan & Jacques‐Antoine Gauthier, 2020. "Model‐based clustering and analysis of life history data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1231-1251, June.
    8. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    9. Davaadorj, Zagdbazar, 2024. "The influence of the digital divide on peer-to-peer lending outcomes," Finance Research Letters, Elsevier, vol. 61(C).
    10. Jin, Jiashun & Ke, Zheng Tracy & Luo, Shengming, 2024. "Mixed membership estimation for social networks," Journal of Econometrics, Elsevier, vol. 239(2).
    11. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    12. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    13. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    14. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    15. Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    16. Rawya Zreik & Pierre Latouche & Charles Bouveyron, 2017. "The dynamic random subgraph model for the clustering of evolving networks," Computational Statistics, Springer, vol. 32(2), pages 501-533, June.
    17. Ick Hoon Jin & Minjeong Jeon, 2019. "A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 236-260, March.
    18. Zhewen Tang & Mahmood Shah & Arshad Jamal, 2024. "Exploring the Process of Technology Socialization (TS) in the Family: ICT Adoption for Middle-aged Parents with the Influence of Adult Children," Information Systems Frontiers, Springer, vol. 26(5), pages 1873-1892, October.
    19. Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    20. Prates, Marcos Oliveira & Lachos, Victor Hugo & Barbosa Cabral, Celso Rômulo, 2013. "mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i12).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:5:d:10.1007_s10260-024-00766-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.