IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v17y2025i1d10.1007_s12561-023-09394-6.html
   My bibliography  Save this article

Covariate-Balancing-Aware Interpretable Deep Learning Models for Treatment Effect Estimation

Author

Listed:
  • Kan Chen

    (University of Pennsylvania)

  • Qishuo Yin

    (University of Pennsylvania)

  • Qi Long

    (University of Pennsylvania)

Abstract

Estimating treatment effects is of great importance for many biomedical applications with observational data. Particularly, interpretability of the treatment effects is preferable for many biomedical researchers. In this paper, we first provide a theoretical analysis and derive an upper bound for the bias of average treatment effect (ATE) estimation under the strong ignorability assumption. Derived by leveraging appealing properties of the weighted energy distance, our upper bound is tighter than what has been reported in the literature. Motivated by the theoretical analysis, we propose a novel objective function for estimating the ATE that uses the energy distance balancing score and hence does not require the correct specification of the propensity score model. We also leverage recently developed neural additive models to improve interpretability of deep learning models used for potential outcome prediction. We further enhance our proposed model with an energy distance balancing score weighted regularization. The superiority of our proposed model over current state-of-the-art methods is demonstrated in semi-synthetic experiments using two benchmark datasets, namely, IHDP and ACIC, as well as is examined through the study of the effect of smoking on the blood level of cadmium using NHANES.

Suggested Citation

  • Kan Chen & Qishuo Yin & Qi Long, 2025. "Covariate-Balancing-Aware Interpretable Deep Learning Models for Treatment Effect Estimation," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(1), pages 132-150, April.
  • Handle: RePEc:spr:stabio:v:17:y:2025:i:1:d:10.1007_s12561-023-09394-6
    DOI: 10.1007/s12561-023-09394-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-023-09394-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-023-09394-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    3. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    2. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    3. Dongcheng Zhang & Kunpeng Zhang, 2020. "Weighting-Based Treatment Effect Estimation via Distribution Learning," Papers 2012.13805, arXiv.org, revised May 2023.
    4. Phillip Heiler, 2022. "Efficient Covariate Balancing for the Local Average Treatment Effect," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1569-1582, October.
    5. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    6. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    7. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    8. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
    9. Oyenubi, Adeola & Kollamparambil, Umakrishnan, 2023. "Does noncompliance with COVID-19 regulations impact the depressive symptoms of others?," Economic Modelling, Elsevier, vol. 120(C).
    10. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    11. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    12. Miquel Oliu-Barton & Bary S. R. Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B. Wolff, 2022. "The effect of COVID certificates on vaccine uptake, health outcomes, and the economy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Sander Gerritsen & Mark Kattenberg & Sonny Kuijpers, 2019. "The impact of age at arrival on education and mental health," CPB Discussion Paper 389.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    14. Black, Dan A. & Grogger, Jeffrey & Kirchmaier, Tom & Sanders, Koen, 2023. "Criminal charges, risk assessment and violent recidivism in cases of domestic abuse," LSE Research Online Documents on Economics 121374, London School of Economics and Political Science, LSE Library.
    15. Elliott Ash & Daniel L. Chen & Sergio Galletta, 2022. "Measuring Judicial Sentiment: Methods and Application to US Circuit Courts," Economica, London School of Economics and Political Science, vol. 89(354), pages 362-376, April.
    16. Pradhi Aggarwal & Alec Brandon & Ariel Goldszmidt & Justin Holz & John List & Ian Muir & Gregory Sun & Thomas Yu, 2022. "High-frequency location data shows that race affects the likelihood of being stopped and fined for speeding," Natural Field Experiments 00764, The Field Experiments Website.
    17. Songul Cinaroglu, 2020. "Modelling unbalanced catastrophic health expenditure data by using machine‐learning methods," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 168-181, October.
    18. Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
    19. Sander Gerritsen & Mark Kattenberg & Sonny Kuijpers, 2019. "The impact of age at arrival on education and mental health," CPB Discussion Paper 389, CPB Netherlands Bureau for Economic Policy Analysis.
    20. Hugo Bodory & Martin Huber & Michael Lechner, 2024. "The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:17:y:2025:i:1:d:10.1007_s12561-023-09394-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.