IDEAS home Printed from
   My bibliography  Save this article

Free triples, large indifference classes and the majority rule


  • Salvador Barberà


  • Lars Ehlers



We present a new domain of preferences under which the majority relation is always quasi-transitive and thus Condorcet winners always exist. We model situations where a set of individuals must choose one individual in the group. Agents are connected through some relationship that can be interpreted as expressing neighborhood, and which is formalized by a graph. Our restriction on preferences is as follows: each agent can freely rank his immediate neighbors, but then he is indifferent between each neighbor and all other agents that this neighbor "leads to". Hence, agents can be highly perceptive regarding their neighbors, while being insensitive to the differences between these and other agents which are further removed from them. We show quasi-transitivity of the majority relation when the graph expressing the neighborhood relation is a tree. We also discuss a further restriction allowing to extend the result for more general graphs. Finally, we compare the proposed restriction with others in the literature, to conclude that it is independent of any previously discussed domain restriction.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Salvador Barberà & Lars Ehlers, 2011. "Free triples, large indifference classes and the majority rule," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 37(4), pages 559-574, October.
  • Handle: RePEc:spr:sochwe:v:37:y:2011:i:4:p:559-574
    DOI: 10.1007/s00355-011-0584-8

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. David Pérez-Castrillo & David Wettstein, 2002. "Choosing Wisely: A Multibidding Approach," American Economic Review, American Economic Association, vol. 92(5), pages 1577-1587, December.
    2. Inada, Ken-Ichi, 1969. "The Simple Majority Decision Rule," Econometrica, Econometric Society, vol. 37(3), pages 490-506, July.
    3. Sen, Amartya & Pattanaik, Prasanta K., 1969. "Necessary and sufficient conditions for rational choice under majority decision," Journal of Economic Theory, Elsevier, vol. 1(2), pages 178-202, August.
    4. Salles, Maurice, 1976. "Characterization of Transitive Individual Preferences for Quasi-Transitive Collective Preference under Simple Games," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(2), pages 308-318, June.
    5. Gaertner,Wulf, 2006. "Domain Conditions in Social Choice Theory," Cambridge Books, Cambridge University Press, number 9780521028745, March.
    6. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.
    7. Dutta, Bhaskar & Jackson, Matthew O & Le Breton, Michel, 2001. "Strategic Candidacy and Voting Procedures," Econometrica, Econometric Society, vol. 69(4), pages 1013-1037, July.
    8. Bogomolnaia, Anna & Moulin, Herve & Stong, Richard, 2005. "Collective choice under dichotomous preferences," Journal of Economic Theory, Elsevier, vol. 122(2), pages 165-184, June.
    9. Demange, Gabrielle, 1982. "Single-peaked orders on a tree," Mathematical Social Sciences, Elsevier, vol. 3(4), pages 389-396, December.
    10. Plott, Charles R, 1973. "Path Independence, Rationality, and Social Choice," Econometrica, Econometric Society, vol. 41(6), pages 1075-1091, November.
    11. Grandmont, Jean-Michel, 1978. "Intermediate Preferences and the Majority Rule," Econometrica, Econometric Society, vol. 46(2), pages 317-330, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Anup Pramanik & Arunava Sen, 2016. "Pairwise partition graphs and strategy-proof social choice in the exogenous indifference class model," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(1), pages 1-24, June.
    2. repec:spr:sochwe:v:50:y:2018:i:1:d:10.1007_s00355-017-1075-3 is not listed on IDEAS
    3. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:37:y:2011:i:4:p:559-574. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.