IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v28y2025i1d10.1007_s11203-024-09323-4.html
   My bibliography  Save this article

Fast likelihood calculations for emerging epidemics

Author

Listed:
  • Frank Ball

    (University of Nottingham)

  • Peter Neal

    (University of Nottingham)

Abstract

Statistical inference for epidemic outbreaks is often complicated by only partial observation of the epidemic process. Recently in Ball and Neal (Adv Appl Probab 55:895-926, 2023) the distribution of the number of infectives (individuals alive) given only the times of removals (death) in a Markovian SIR epidemic (time-inhomogeneous birth–death process) was derived. We show that this allows us to derive an explicit expression for the likelihood of the observed inter-removal times of the epidemic without recourse to data augmentation techniques. Moreover, the time-inhomogeneous birth–death process provides a good approximation for the SIR epidemic model for which we are able to obtain both, the exact likelihood of the inter-arrival death times, and a fast to compute Gaussian-based approximation of the likelihood. The explicit expressions for the likelihood enable us to reveal bi-modality in the likelihood of the ongoing Markovian SIR epidemic model and to devise scaleable MCMC algorithms which are applied to the emergence of the Covid-19 epidemic in Europe (March–May 2020).

Suggested Citation

  • Frank Ball & Peter Neal, 2025. "Fast likelihood calculations for emerging epidemics," Statistical Inference for Stochastic Processes, Springer, vol. 28(1), pages 1-25, April.
  • Handle: RePEc:spr:sistpr:v:28:y:2025:i:1:d:10.1007_s11203-024-09323-4
    DOI: 10.1007/s11203-024-09323-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-024-09323-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-024-09323-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. D. O’Neill & G. O. Roberts, 1999. "Bayesian inference for partially observed stochastic epidemics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 121-129.
    2. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    3. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    4. Paul Fearnhead & Loukia Meligkotsidou, 2004. "Exact filtering for partially observed continuous time models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 771-789, August.
    5. Damian Clancy & Philip D. O'Neill, 2007. "Exact Bayesian Inference and Model Selection for Stochastic Models of Epidemics Among a Community of Households," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 259-274, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    2. Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.
    3. Xiang, Fei & Neal, Peter, 2014. "Efficient MCMC for temporal epidemics via parameter reduction," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 240-250.
    4. Camelia R Walker & Joshua V Ross & Andrew J Black, 2017. "Inference of epidemiological parameters from household stratified data," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-21, October.
    5. Gyanendra Pokharel & Rob Deardon, 2022. "Emulation‐based inference for spatial infectious disease transmission models incorporating event time uncertainty," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 455-479, March.
    6. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    7. Leonard J. Paas & Jeroen K. Vermunt & Tammo H. A. Bijmolt, 2007. "Discrete time, discrete state latent Markov modelling for assessing and predicting household acquisitions of financial products," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 955-974, October.
    8. David R J Pleydell & Samuel Soubeyrand & Sylvie Dallot & Gérard Labonne & Joël Chadœuf & Emmanuel Jacquot & Gaël Thébaud, 2018. "Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-24, April.
    9. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    10. repec:plo:pcbi00:1003587 is not listed on IDEAS
    11. Phenyo E. Lekone & Bärbel F. Finkenstädt, 2006. "Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study," Biometrics, The International Biometric Society, vol. 62(4), pages 1170-1177, December.
    12. Annemarie Bouma & Ivo Claassen & Ketut Natih & Don Klinkenberg & Christl A Donnelly & Guus Koch & Michiel van Boven, 2009. "Estimation of Transmission Parameters of H5N1 Avian Influenza Virus in Chickens," PLOS Pathogens, Public Library of Science, vol. 5(1), pages 1-13, January.
    13. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," CESifo Working Paper Series 8977, CESifo.
    14. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
    15. Ross, J.V. & Pagendam, D.E. & Pollett, P.K., 2009. "On parameter estimation in population models II: Multi-dimensional processes and transient dynamics," Theoretical Population Biology, Elsevier, vol. 75(2), pages 123-132.
    16. Ross, J.V., 2012. "On parameter estimation in population models III: Time-inhomogeneous processes and observation error," Theoretical Population Biology, Elsevier, vol. 82(1), pages 1-17.
    17. Jonas E. Arias & Jesús Fernández-Villaverde & Juan Rubio Ramírez & Minchul Shin, 2021. "The Causal Effects of Lockdown Policies on Health and Macroeconomic Outcomes," NBER Working Papers 28617, National Bureau of Economic Research, Inc.
    18. Peter J. Diggle & Sylvia Richardson, 2022. "‘Introduction’," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 3-4, November.
    19. Paas, L.J. & Vermunt, J.K. & Bijmolt, T.H.A., 2007. "Discrete-time discrete-state latent Markov modelling for assessing and predicting household acquisitions of financial products," Other publications TiSEM 5781ab33-6687-4ad5-b57a-3, Tilburg University, School of Economics and Management.
    20. Gyanendra Pokharel & Shakhawat Hossain & Colton Poitras, 2024. "Supervised classification of spatial epidemics incorporating infection time uncertainty," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(2), pages 703-722, April.
    21. Yang, Yang & Longini Jr., Ira M. & Elizabeth Halloran, M., 2007. "A data-augmentation method for infectious disease incidence data from close contact groups," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6582-6595, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:28:y:2025:i:1:d:10.1007_s11203-024-09323-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.