IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v130y2025i3d10.1007_s11192-025-05261-x.html
   My bibliography  Save this article

Community broker effects: evidence from Japanese research networks

Author

Listed:
  • Jungwon Min

    (Inha University)

Abstract

In real-life situations, social actors often belong to multiple subnetworks or network communities with limited overlap. By bridging implicit communities formed through social interactions, actors benefit from hybrid network positions that combine brokerage and cohesion within an extended network scope. However, its effects remain understudied. This study aims to fill this gap by defining these actors as community brokers and examining their effects on work productivity and status building. By analyzing research networks in Japan from 1991 to 2018, this study reveals that community brokers tend to demonstrate high research productivity and receive more awards. These benefits are contingent on the seniority of the researchers. The advantages of community brokers regarding productivity, particularly in producing qualified research, diminish for early career researchers, whereas the benefits related to award achievements are strengthened for this group. These findings highlight how researchers can effectively leverage their networks across a broader scope.

Suggested Citation

  • Jungwon Min, 2025. "Community broker effects: evidence from Japanese research networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(3), pages 1469-1496, March.
  • Handle: RePEc:spr:scient:v:130:y:2025:i:3:d:10.1007_s11192-025-05261-x
    DOI: 10.1007/s11192-025-05261-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-025-05261-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-025-05261-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregorio González-Alcaide & Héctor Pinargote & José M. Ramos, 2020. "From cut-points to key players in co-authorship networks: a case study in ventilator-associated pneumonia research," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 707-733, May.
    2. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107667273, Enero.
    3. Jingbei Wang & Naiding Yang, 2019. "Dynamics of collaboration network community and exploratory innovation: the moderation of knowledge networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1067-1084, November.
    4. Naomi Fukuzawa, 2014. "An empirical analysis of the relationship between individual characteristics and research productivity," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 785-809, June.
    5. Giulio Cainelli & Mario A. Maggioni & T. Erika Uberti & Annunziata Felice, 2015. "The strength of strong ties: How co-authorship affect productivity of academic economists?," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 673-699, January.
    6. Geraldo J. Pessoa Junior & Thiago M. R. Dias & Thiago H. P. Silva & Alberto H. F. Laender, 2020. "On interdisciplinary collaborations in scientific coauthorship networks: the case of the Brazilian community," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2341-2360, September.
    7. Nataliya Matveeva & Anuška Ferligoj, 2020. "Scientific collaboration in Russian universities before and after the excellence initiative Project 5-100," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2383-2407, September.
    8. Yuehua Zhao & Rongying Zhao, 2016. "An evolutionary analysis of collaboration networks in scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 759-772, May.
    9. Thomas Heinze & Philip Shapira & Jacqueline Senker & Stefan Kuhlmann, 2007. "Identifying creative research accomplishments: Methodology and results for nanotechnology and human genetics," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 125-152, January.
    10. Ryazanova, Olga & Jaskiene, Jolanta, 2022. "Managing individual research productivity in academic organizations: A review of the evidence and a path forward," Research Policy, Elsevier, vol. 51(2).
    11. Chris Fields, 2015. "Close to the edge: co-authorship proximity of Nobel laureates in Physiology or Medicine, 1991–2010, to cross-disciplinary brokers," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 267-299, April.
    12. Myra Mohnen, 2022. "Stars and Brokers: Knowledge Spillovers Among Medical Scientists," Management Science, INFORMS, vol. 68(4), pages 2513-2532, April.
    13. Cantner, Uwe & Rake, Bastian, 2014. "International research networks in pharmaceuticals: Structure and dynamics," Research Policy, Elsevier, vol. 43(2), pages 333-348.
    14. Leonardo Reyes-Gonzalez & Claudia N. Gonzalez-Brambila & Francisco Veloso, 2016. "Using co-authorship and citation analysis to identify research groups: a new way to assess performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1171-1191, September.
    15. Gonzalez-Brambila, Claudia N. & Veloso, Francisco M. & Krackhardt, David, 2013. "The impact of network embeddedness on research output," Research Policy, Elsevier, vol. 42(9), pages 1555-1567.
    16. Frank Neri & Joan R. Rodgers, 2013. "Eagles and Turkeys: Human Capital Externalities, Departmental Co-authorship and Research Productivity," Australian Economic Papers, Wiley Blackwell, vol. 52(3-4), pages 171-189, December.
    17. Gina Colarelli O'Connor & Mark P. Rice & Lois Peters & Robert W. Veryzer, 2003. "Managing Interdisciplinary, Longitudinal Research Teams: Extending Grounded Theory-Building Methodologies," Organization Science, INFORMS, vol. 14(4), pages 353-373, August.
    18. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.
    19. Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
    20. Rebecca Long & Aleta Crawford & Michael White & Kimberly Davis, 2009. "Determinants of faculty research productivity in information systems: An empirical analysis of the impact of academic origin and academic affiliation," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(2), pages 231-260, February.
    21. Zewen Hu & Angela Lin & Peter Willett, 2019. "Identification of research communities in cited and uncited publications using a co-authorship network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 1-19, January.
    22. M. Ann McFadyen & Matthew Semadeni & Albert A. Cannella, 2009. "Value of Strong Ties to Disconnected Others: Examining Knowledge Creation in Biomedicine," Organization Science, INFORMS, vol. 20(3), pages 552-564, June.
    23. Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.
    24. Shonkwiler, J.S., 2016. "Variance of the truncated negative binomial distribution," Journal of Econometrics, Elsevier, vol. 195(2), pages 209-210.
    25. Rost, Katja, 2011. "The strength of strong ties in the creation of innovation," Research Policy, Elsevier, vol. 40(4), pages 588-604, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    2. Guan, Jiancheng & Zhang, Jingjing & Yan, Yan, 2015. "The impact of multilevel networks on innovation," Research Policy, Elsevier, vol. 44(3), pages 545-559.
    3. Qinwei Cao & Manqing Tan & Peng Xie & Jian Huang, 2022. "Can emerging economies take advantage of their population size to gain international academic recognition? Evidence from key universities in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 927-957, February.
    4. Zhang, Ningning & You, Dingyi & Tang, Le & Wen, Ke, 2023. "Knowledge path dependence, external connection, and radical inventions: Evidence from Chinese Academy of Sciences," Research Policy, Elsevier, vol. 52(4).
    5. Guan, JianCheng & Zuo, KaiRui & Chen, KaiHua & Yam, Richard C.M., 2016. "Does country-level R&D efficiency benefit from the collaboration network structure?," Research Policy, Elsevier, vol. 45(4), pages 770-784.
    6. Tu, Jing, 2024. "Openness to international collaboration and tie strength in enhancing knowledge creation," Journal of Informetrics, Elsevier, vol. 18(1).
    7. Gregorio González-Alcaide & Héctor Pinargote & José M. Ramos, 2020. "From cut-points to key players in co-authorship networks: a case study in ventilator-associated pneumonia research," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 707-733, May.
    8. Chen, Kaihua & Zhang, Yi & Zhu, Guilong & Mu, Rongping, 2020. "Do research institutes benefit from their network positions in research collaboration networks with industries or/and universities?," Technovation, Elsevier, vol. 94.
    9. Uwe Cantner & Martin Kalthaus & Matthias Menter & Pierre Mohnen, 2023. "Global knowledge flows: characteristics, determinants, and impacts," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 32(5), pages 1063-1076.
    10. Sader, Myra & Chollet, Barthélemy & Brion, Sébastien & Trendel, Olivier, 2021. "Supported, detached, or marginalized? The ambivalent role of social capital on stress at work," European Management Journal, Elsevier, vol. 39(6), pages 768-778.
    11. Moxin Li & Yang Wang, 2024. "Influence of political tensions on scientific productivity, citation impact, and knowledge combinations," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(4), pages 2337-2370, April.
    12. Maria Tsouri, 2022. "Knowledge networks and strong tie creation: the role of relative network position," Journal of Geographical Systems, Springer, vol. 24(1), pages 95-114, January.
    13. Arranz, Nieves & Arroyabe, Marta F. & Schumann, Martin, 2020. "The role of NPOs and international actors in the national innovation system: A network-based approach," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    14. Stefano Scarazzati & Lili Wang, 2019. "The effect of collaborations on scientific research output: the case of nanoscience in Chinese regions," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 839-868, November.
    15. Takashi Iino & Hiroyasu Inoue & Yukiko U. Saito & Yasuyuki Todo, 2021. "How does the global network of research collaboration affect the quality of innovation?," The Japanese Economic Review, Springer, vol. 72(1), pages 5-48, January.
    16. Nandan Jha & Neena Banerjee, 2025. "Effects of diffusion and education on women’s fertility in India," Journal of Population Research, Springer, vol. 42(2), pages 1-48, June.
    17. Chollet, Barthélemy & Revet, Karine, 2023. "Digging deep or scratching the surface? Contingent innovation outcomes of seeking advice from geographically distant ties," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    18. Ben Zhang & Xiaohong Wang, 2017. "Empirical study on influence of university-industry collaboration on research performance and moderating effect of social capital: evidence from engineering academics in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 257-277, October.
    19. Maria Tsouri, 2020. "Knowledge Networks and Strong Tie Creation: the Role of Relative Network Position," Papers in Evolutionary Economic Geography (PEEG) 2039, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Sep 2020.
    20. Chen, Wei & Yan, Yan, 2023. "New components and combinations: The perspective of the internal collaboration networks of scientific teams," Journal of Informetrics, Elsevier, vol. 17(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:130:y:2025:i:3:d:10.1007_s11192-025-05261-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.