IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v123y2020i2d10.1007_s11192-020-03404-w.html
   My bibliography  Save this article

From cut-points to key players in co-authorship networks: a case study in ventilator-associated pneumonia research

Author

Listed:
  • Gregorio González-Alcaide

    (University of Valencia)

  • Héctor Pinargote

    (General University Hospital of Alicante)

  • José M. Ramos

    (Miguel Hernandez University of Elche de Elche)

Abstract

In co-authorship networks, some nodes play the key role of cut-point, facilitating the integration of other authors and favoring connectivity among different research communities. The present study uses bibliometric and network embeddedness indicators to analyze the scientific activity on ventilator-associated pneumonia and the roles of 17 research communities and 30 cut-points therein. In addition to fostering network connectivity and cohesion, cut-points are characterized by other differential features compared to other authors, including a much higher level of productivity and greater participation in leadership positions, higher betweenness values, lower clustering coefficients and higher levels of constraint. The cut-points identified have different characteristics in terms of the connectivity they facilitate between research communities: some cut-points have established weak intercommunity ties in the form of bridges with a single author from a different community; in other cases, they serve as gatekeepers due to their connection with different authors of a community that they link with their own; cut-points may also act as structural folds, that is, actors with an overlapping role between two cohesive communities. The cut-points present very diverse connectivity degrees, with some cut-points whose elimination would provoke severe network fragmentation and others who are responsible for linking far fewer external authors to their network. The cut-points that present both the main mechanisms for obtaining social capital—that is, filling structural holes and participating in cohesive network structures—can be considered key actors/players because their participation is crucial for ensuring both integration into the main research focus of some communities with high research performance and the overall cohesion of a co-authorship network.

Suggested Citation

  • Gregorio González-Alcaide & Héctor Pinargote & José M. Ramos, 2020. "From cut-points to key players in co-authorship networks: a case study in ventilator-associated pneumonia research," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 707-733, May.
  • Handle: RePEc:spr:scient:v:123:y:2020:i:2:d:10.1007_s11192-020-03404-w
    DOI: 10.1007/s11192-020-03404-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03404-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03404-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bordons, María & Aparicio, Javier & González-Albo, Borja & Díaz-Faes, Adrián A., 2015. "The relationship between the research performance of scientists and their position in co-authorship networks in three fields," Journal of Informetrics, Elsevier, vol. 9(1), pages 135-144.
    2. Patrick Doreian & Kayo Fujimoto, 2004. "Identifying Linking-Pin Organizations in Inter-Organizational Networks," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 45-68, May.
    3. Cardillo, Alessio & Scellato, Salvatore & Latora, Vito, 2006. "A topological analysis of scientific coauthorship networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(2), pages 333-339.
    4. Liliana Arroyo Moliner & Eva Gallardo-Gallardo & Pedro Gallo de Puelles, 2017. "Understanding scientific communities: a social network approach to collaborations in Talent Management research," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1439-1462, December.
    5. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    6. Gilsing, Victor & Nooteboom, Bart & Vanhaverbeke, Wim & Duysters, Geert & van den Oord, Ad, 2008. "Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density," Research Policy, Elsevier, vol. 37(10), pages 1717-1731, December.
    7. Tazio Vanni & Marco Mesa-Frias & Ruben Sanchez-Garcia & Rafael Roesler & Gilberto Schwartsmann & Marcelo Z Goldani & Anna M Foss, 2014. "International Scientific Collaboration in HIV and HPV: A Network Analysis," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-8, March.
    8. Kamal Badar & Julie M. Hite & Yuosre F. Badir, 2013. "Examining the relationship of co-authorship network centrality and gender on academic research performance: the case of chemistry researchers in Pakistan," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 755-775, February.
    9. Gregorio González-Alcaide & Juan Carlos Valderrama-Zurián & Rafael Aleixandre-Benavent, 2012. "The Impact Factor in non-English-speaking countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 297-311, August.
    10. Giulio Cainelli & Mario A. Maggioni & T. Erika Uberti & Annunziata Felice, 2015. "The strength of strong ties: How co-authorship affect productivity of academic economists?," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 673-699, January.
    11. Sameer Kumar & Bernd Markscheffel, 2016. "Bonded-communities in HantaVirus research: a research collaboration network (RCN) analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 533-550, October.
    12. Chien Hsiang Liao, 2011. "How to improve research quality? Examining the impacts of collaboration intensity and member diversity in collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(3), pages 747-761, March.
    13. Abbasi, Alireza & Altmann, Jörn & Hossain, Liaquat, 2011. "Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures," Journal of Informetrics, Elsevier, vol. 5(4), pages 594-607.
    14. Noriko Hara & Paul Solomon & Seung‐Lye Kim & Diane H. Sonnenwald, 2003. "An emerging view of scientific collaboration: Scientists' perspectives on collaboration and factors that impact collaboration," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(10), pages 952-965, August.
    15. Barry Bozeman & Daniel Fay & Catherine Slade, 2013. "Research collaboration in universities and academic entrepreneurship: the-state-of-the-art," The Journal of Technology Transfer, Springer, vol. 38(1), pages 1-67, February.
    16. Woolcock, Michael & Narayan, Deepa, 2000. "Social Capital: Implications for Development Theory, Research, and Policy," The World Bank Research Observer, World Bank, vol. 15(2), pages 225-249, August.
    17. Adams, James D. & Black, Grant C. & Clemmons, J. Roger & Stephan, Paula E., 2005. "Scientific teams and institutional collaborations: Evidence from U.S. universities, 1981-1999," Research Policy, Elsevier, vol. 34(3), pages 259-285, April.
    18. Gonzalez-Brambila, Claudia N. & Veloso, Francisco M. & Krackhardt, David, 2013. "The impact of network embeddedness on research output," Research Policy, Elsevier, vol. 42(9), pages 1555-1567.
    19. Thomas Heinze & Gerrit Bauer, 2007. "Characterizing creative scientists in nano-S&T: Productivity, multidisciplinarity, and network brokerage in a longitudinal perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 811-830, March.
    20. Li, Eldon Y. & Liao, Chien Hsiang & Yen, Hsiuju Rebecca, 2013. "Co-authorship networks and research impact: A social capital perspective," Research Policy, Elsevier, vol. 42(9), pages 1515-1530.
    21. Dorothea Jansen & Regina Görtz & Richard Heidler, 2010. "Knowledge production and the structure of collaboration networks in two scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 219-241, April.
    22. Caroline S Wagner & Edwin Horlings & Travis A Whetsell & Pauline Mattsson & Katarina Nordqvist, 2015. "Do Nobel Laureates Create Prize-Winning Networks? An Analysis of Collaborative Research in Physiology or Medicine," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-13, July.
    23. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    24. Leydesdorff, Loet & Wagner, Caroline S., 2008. "International collaboration in science and the formation of a core group," Journal of Informetrics, Elsevier, vol. 2(4), pages 317-325.
    25. Shahadat Uddin & Liaquat Hossain & Alireza Abbasi & Kim Rasmussen, 2012. "Trend and efficiency analysis of co-authorship network," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 687-699, February.
    26. M. Ann McFadyen & Matthew Semadeni & Albert A. Cannella, 2009. "Value of Strong Ties to Disconnected Others: Examining Knowledge Creation in Biomedicine," Organization Science, INFORMS, vol. 20(3), pages 552-564, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    2. Gregorio González-Alcaide, 2021. "Bibliometric studies outside the information science and library science field: uncontainable or uncontrollable?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6837-6870, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun Liu & Mengya Zhang & Gupeng Zhang & Xiongxiong You, 2022. "Scientific elites versus other scientists: who are better at taking advantage of the research collaboration network?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3145-3166, June.
    2. Ben Zhang & Xiaohong Wang, 2017. "Empirical study on influence of university-industry collaboration on research performance and moderating effect of social capital: evidence from engineering academics in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 257-277, October.
    3. Chen, Wei & Yan, Yan, 2023. "New components and combinations: The perspective of the internal collaboration networks of scientific teams," Journal of Informetrics, Elsevier, vol. 17(2).
    4. Bordons, María & Aparicio, Javier & González-Albo, Borja & Díaz-Faes, Adrián A., 2015. "The relationship between the research performance of scientists and their position in co-authorship networks in three fields," Journal of Informetrics, Elsevier, vol. 9(1), pages 135-144.
    5. Kamal Badar & Julie M. Hite & Yuosre F. Badir, 2013. "Examining the relationship of co-authorship network centrality and gender on academic research performance: the case of chemistry researchers in Pakistan," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 755-775, February.
    6. Kamal Badar & Julie M. Hite & Naeem Ashraf, 2015. "Knowledge network centrality, formal rank and research performance: evidence for curvilinear and interaction effects," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1553-1576, December.
    7. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    8. Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.
    9. Guan, JianCheng & Zuo, KaiRui & Chen, KaiHua & Yam, Richard C.M., 2016. "Does country-level R&D efficiency benefit from the collaboration network structure?," Research Policy, Elsevier, vol. 45(4), pages 770-784.
    10. Fernando Martín-Alcázar & Marta Ruiz-Martínez & Gonzalo Sánchez-Gardey, 2019. "Assessing social capital in academic research teams: a measurement instrument proposal," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 917-935, November.
    11. Wang, Jian, 2016. "Knowledge creation in collaboration networks: Effects of tie configuration," Research Policy, Elsevier, vol. 45(1), pages 68-80.
    12. Eli Rudinow Saetnan & Richard Philip Kipling, 2016. "Evaluating a European knowledge hub on climate change in agriculture: Are we building a better connected community?," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 1057-1074, November.
    13. Zhang, Yi & Chen, Kaihua, 2022. "Network growth dynamics: The simultaneous interaction between network positions and research performance of collaborative organisations," Technovation, Elsevier, vol. 115(C).
    14. Jorge Rodriguez Miramontes & C. N. Gonzalez-Brambila, 2016. "The effects of external collaboration on research output in engineering," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 661-675, November.
    15. Li, Eldon Y. & Liao, Chien Hsiang & Yen, Hsiuju Rebecca, 2013. "Co-authorship networks and research impact: A social capital perspective," Research Policy, Elsevier, vol. 42(9), pages 1515-1530.
    16. Guijie Zhang & Luning Liu & Yuqiang Feng & Zhen Shao & Yongli Li, 2014. "Cext-N index: a network node centrality measure for collaborative relationship distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 291-307, October.
    17. Stefano Scarazzati & Lili Wang, 2019. "The effect of collaborations on scientific research output: the case of nanoscience in Chinese regions," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 839-868, November.
    18. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    19. Bilicz, Dávid, 2021. "A hálózatok és a kapcsolatok szerepe az innovációban és a tudás áramlásában. Szisztematikus szakirodalmi áttekintés [The role of networks and partnerships in innovation and knowledge flow - a syste," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 674-698.
    20. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:123:y:2020:i:2:d:10.1007_s11192-020-03404-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.