IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v130y2025i2d10.1007_s11192-024-05228-4.html
   My bibliography  Save this article

Discovering AI adoption patterns from big academic graph data

Author

Listed:
  • Sang Yoon Kim

    (Yonsei University)

  • Won Kyung Lee

    (Yonsei University
    Hartree Centre)

  • Su Jung Jee

    (University of Sheffield
    University of Oxford)

  • So Young Sohn

    (Yonsei University)

Abstract

Although AI has been widely adopted by researchers in non-AI disciplines, the path to fully realizing its benefits through adoption remains unclear. A comprehensive understanding of AI adoption patterns can reveal who is able to leverage this emerging technology and in what ways, providing insights into the future direction of AI applications and research collaboration. This study leverages the Microsoft Academic Graph, a massive bibliographic dataset with detailed subfield information, to investigate AI adoption patterns among researchers in various disciplines (18 non-AI disciplines ranging from the humanities and social sciences to STEM), career stages (early, mid, and senior), and the interactions between these two aspects from 2006 onwards. Our findings indicate that researchers in economics and business can play an important bridging role in AI-related collaborations between STEM and social science researchers, who currently exhibit substantial disparities in AI adoption patterns. Late early-career to early mid-career researchers tend to adopt AI more actively than others, although this pattern varies across disciplines. In some fields, such as materials science, chemistry, and physics, early-career and senior researchers share a considerable level of common understanding and interest in AI, implying the potential for fruitful cross-seniority collaboration.

Suggested Citation

  • Sang Yoon Kim & Won Kyung Lee & Su Jung Jee & So Young Sohn, 2025. "Discovering AI adoption patterns from big academic graph data," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(2), pages 809-831, February.
  • Handle: RePEc:spr:scient:v:130:y:2025:i:2:d:10.1007_s11192-024-05228-4
    DOI: 10.1007/s11192-024-05228-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05228-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05228-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Betancourt, Nathan & Jochem, Torsten & Otner, Sarah M.G., 2023. "Standing on the shoulders of giants: How star scientists influence their coauthors," Research Policy, Elsevier, vol. 52(1).
    2. Wei Wang & Shuo Yu & Teshome Megersa Bekele & Xiangjie Kong & Feng Xia, 2017. "Scientific collaboration patterns vary with scholars’ academic ages," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 329-343, July.
    3. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    4. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    5. Matt Marx & Aaron Fuegi, 2020. "Reliance on science: Worldwide front‐page patent citations to scientific articles," Strategic Management Journal, Wiley Blackwell, vol. 41(9), pages 1572-1594, September.
    6. Arif, Imtiaz & Aslam, Wajeeha & Hwang, Yujong, 2020. "Barriers in adoption of internet banking: A structural equation modeling - Neural network approach," Technology in Society, Elsevier, vol. 61(C).
    7. Bianchini, Stefano & Müller, Moritz & Pelletier, Pierre, 2022. "Artificial intelligence in science: An emerging general method of invention," Research Policy, Elsevier, vol. 51(10).
    8. Stefano Bianchini & Moritz Müller & Pierre Pelletier, 2022. "Artificial intelligence in science: An emerging general method of invention," Post-Print hal-03958025, HAL.
    9. Xiao Han T Zeng & Jordi Duch & Marta Sales-Pardo & João A G Moreira & Filippo Radicchi & Haroldo V Ribeiro & Teresa K Woodruff & Luís A Nunes Amaral, 2016. "Differences in Collaboration Patterns across Discipline, Career Stage, and Gender," PLOS Biology, Public Library of Science, vol. 14(11), pages 1-19, November.
    10. Na Liu & Philip Shapira & Xiaoxu Yue, 2021. "Tracking developments in artificial intelligence research: constructing and applying a new search strategy," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3153-3192, April.
    11. Glenn MacDonald & Michael S. Weisbach, 2004. "The Economics of Has-beens," Journal of Political Economy, University of Chicago Press, vol. 112(S1), pages 289-310, February.
    12. Anne-Wil Harzing & Satu Alakangas, 2017. "Microsoft Academic is one year old: the Phoenix is ready to leave the nest," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1887-1894, September.
    13. Andersen, Jens Peter & Nielsen, Mathias Wullum, 2018. "Google Scholar and Web of Science: Examining gender differences in citation coverage across five scientific disciplines," Journal of Informetrics, Elsevier, vol. 12(3), pages 950-959.
    14. Anne-Wil Harzing, 2019. "Two new kids on the block: How do Crossref and Dimensions compare with Google Scholar, Microsoft Academic, Scopus and the Web of Science?," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 341-349, July.
    15. Alberto Martín-Martín & Mike Thelwall & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2021. "Correction to: Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 907-908, January.
    16. Mikko Packalen & Jay Bhattacharya, 2019. "Age and the Trying Out of New Ideas," Journal of Human Capital, University of Chicago Press, vol. 13(2), pages 341-373.
    17. Tahereh Dehdarirad & Anna Villarroya & Maite Barrios, 2015. "Research on women in science and higher education: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 795-812, June.
    18. Yi Bu & Mengyang Li & Weiye Gu & Win‐bin Huang, 2021. "Topic diversity: A discipline scheme‐free diversity measurement for journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(5), pages 523-539, May.
    19. Sven E. Hug & Martin P. Brändle, 2017. "The coverage of Microsoft Academic: analyzing the publication output of a university," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1551-1571, December.
    20. Daqing Zheng & Jin Chen & Lihua Huang & Cheng Zhang, 2013. "E-government adoption in public administration organizations: integrating institutional theory perspective and resource-based view," European Journal of Information Systems, Taylor & Francis Journals, vol. 22(2), pages 221-234, March.
    21. Staša Milojević, 2012. "How Are Academic Age, Productivity and Collaboration Related to Citing Behavior of Researchers?," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.
    22. Wang, Jian & Lee, You-Na & Walsh, John P., 2018. "Funding model and creativity in science: Competitive versus block funding and status contingency effects," Research Policy, Elsevier, vol. 47(6), pages 1070-1083.
    23. Bedoor K. AlShebli & Talal Rahwan & Wei Lee Woon, 2018. "The preeminence of ethnic diversity in scientific collaboration," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    24. Vincent Larivière & Yves Gingras & Cassidy R. Sugimoto & Andrew Tsou, 2015. "Team size matters: Collaboration and scientific impact since 1900," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(7), pages 1323-1332, July.
    25. Joel Klinger & Juan Mateos-Garcia & Konstantinos Stathoulopoulos, 2021. "Deep learning, deep change? Mapping the evolution and geography of a general purpose technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5589-5621, July.
    26. Alexander V. Giczy & Nicholas A. Pairolero & Andrew A. Toole, 2022. "Identifying artificial intelligence (AI) invention: a novel AI patent dataset," The Journal of Technology Transfer, Springer, vol. 47(2), pages 476-505, April.
    27. Alberto Martín-Martín & Mike Thelwall & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2021. "Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 871-906, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorena Delgado‐Quirós & Isidro F. Aguillo & Alberto Martín‐Martín & Emilio Delgado López‐Cózar & Enrique Orduña‐Malea & José Luis Ortega, 2024. "Why are these publications missing? Uncovering the reasons behind the exclusion of documents in free‐access scholarly databases," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 75(1), pages 43-58, January.
    2. Zhang, Yang & Wang, Yang & Du, Haifeng & Havlin, Shlomo, 2024. "Delayed citation impact of interdisciplinary research," Journal of Informetrics, Elsevier, vol. 18(1).
    3. Steve J. Bickley & Ho Fai Chan & Benno Torgler, 2022. "Artificial intelligence in the field of economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2055-2084, April.
    4. Daniel Souza & Aldo Geuna & Jeff Rodr'iguez, 2024. "How Small is Big Enough? Open Labeled Datasets and the Development of Deep Learning," Papers 2408.10359, arXiv.org.
    5. Liang, Zhentao & Ba, Zhichao & Mao, Jin & Li, Gang, 2023. "Research complexity increases with scientists’ academic age: Evidence from library and information science," Journal of Informetrics, Elsevier, vol. 17(1).
    6. Michael Gusenbauer, 2022. "Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2683-2745, May.
    7. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    8. Sheng, Jingran & Liang, Bo & Wang, Lin & Wang, Xiaofan, 2024. "A study on citation impact with age diversity among disciplines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    9. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.
    10. Mehdi Toloo & Rouhollah Khodabandelou & Amar Oukil, 2022. "A Comprehensive Bibliometric Analysis of Fractional Programming (1965–2020)," Mathematics, MDPI, vol. 10(11), pages 1-21, May.
    11. Zhentao Liang & Jin Mao & Kun Lu & Gang Li, 2021. "Finding citations for PubMed: a large-scale comparison between five freely available bibliographic data sources," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9519-9542, December.
    12. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
    13. Agrawal, Ajay & McHale, John & Oettl, Alexander, 2024. "Artificial intelligence and scientific discovery: a model of prioritized search," Research Policy, Elsevier, vol. 53(5).
    14. Liu, Meijun & Jaiswal, Ajay & Bu, Yi & Min, Chao & Yang, Sijie & Liu, Zhibo & Acuña, Daniel & Ding, Ying, 2022. "Team formation and team impact: The balance between team freshness and repeat collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    15. Abramo, Giovanni & D'Angelo, CiriacoAndrea & Di Costa, Flavia, 2024. "The moderating role of personal characteristics of authors in the publications’ quality for quantity trade-off," Journal of Informetrics, Elsevier, vol. 18(1).
    16. Andrea Borsato & André Lorentz, 2023. "Data production and the coevolving AI trajectories: an attempted evolutionary model," Journal of Evolutionary Economics, Springer, vol. 33(5), pages 1427-1472, November.
    17. Mike Thelwall & Kayvan Kousha & Mahshid Abdoli & Emma Stuart & Meiko Makita & Paul Wilson & Jonathan Levitt, 2023. "Why are coauthored academic articles more cited: Higher quality or larger audience?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(7), pages 791-810, July.
    18. Mike Thelwall, 2023. "Are successful co-authors more important than first authors for publishing academic journal articles?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2211-2232, April.
    19. Stefano Bianchini & Moritz Muller & Pierre Pelletier, 2023. "Drivers and Barriers of AI Adoption and Use in Scientific Research," Papers 2312.09843, arXiv.org, revised Feb 2024.
    20. Alex J. Yang & Huimin Xu & Ying Ding & Meijun Liu, 2024. "Unveiling the dynamics of team age structure and its impact on scientific innovation," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(10), pages 6127-6148, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:130:y:2025:i:2:d:10.1007_s11192-024-05228-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.