IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v86y2024i1d10.1007_s13171-023-00322-w.html
   My bibliography  Save this article

Exponential Bounds and Convergence Rates of Sieve Estimators for Functional Autoregressive Processes

Author

Listed:
  • Nesrine Kara Terki

    (Higher School of Management-Tlemcen)

  • Tahar Mourid

    (University of Abou Bakr Belkaid Tlemcen)

Abstract

In the following study, we deal with the exponential bounds and rates for a class of sieve estimators of Grenander for Functional Autoregressive Processes when the parameter operator belongs to the parameter space of Hilbert-Schmidt operators. Two classes of parameter operators are considered where we state clearly sieve estimators formulas and derive corresponding exponential bounds. These results are applied to establish their almost sure convergence and almost complete convergence. Then, we determine rates of convergence of sieve estimators in each class. The numerical studies illustrate the performance of the sieve predictors and give comparisons with other existing prediction methods both on simulated and real functional data sets exhibiting competitive results.

Suggested Citation

  • Nesrine Kara Terki & Tahar Mourid, 2024. "Exponential Bounds and Convergence Rates of Sieve Estimators for Functional Autoregressive Processes," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 364-391, February.
  • Handle: RePEc:spr:sankha:v:86:y:2024:i:1:d:10.1007_s13171-023-00322-w
    DOI: 10.1007/s13171-023-00322-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-023-00322-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-023-00322-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kara-Terki, Nesrine & Mourid, Tahar, 2016. "On local asymptotic normality for functional autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 120-140.
    2. Berhoune, Kamila & Bensmain, Nawel, 2018. "Sieves estimator of functional autoregressive process," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 60-69.
    3. Mourid, Tahar & Bensmain, Nawel, 2006. "Sieves estimator of the operator of a functional autoregressive process," Statistics & Probability Letters, Elsevier, vol. 76(1), pages 93-108, January.
    4. Philippe C. Besse & Herve Cardot & David B. Stephenson, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Chen & Wee Song Chua & Wolfgang Karl Härdle, 2019. "Forecasting limit order book liquidity supply–demand curves with functional autoregressive dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1473-1489, September.
    2. repec:hum:wpaper:sfb649dp2016-025 is not listed on IDEAS
    3. Berhoune, Kamila & Bensmain, Nawel, 2018. "Sieves estimator of functional autoregressive process," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 60-69.
    4. Ying Chen & Bo Li, 2017. "An Adaptive Functional Autoregressive Forecast Model to Predict Electricity Price Curves," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 371-388, July.
    5. Xu, Meng & Li, Jialiang & Chen, Ying, 2017. "Varying coefficient functional autoregressive model with application to the U.S. treasuries," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 168-183.
    6. Boukhiar, Souad & Mourid, Tahar, 2022. "Resolvent estimators for functional autoregressive processes with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Ayse Yilmaz & Ufuk Yolcu, 2022. "Dendritic neuron model neural network trained by modified particle swarm optimization for time‐series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 793-809, July.
    8. Mingotti, Nicola & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2015. "A Random Walk Test for Functional Time Series," DES - Working Papers. Statistics and Econometrics. WS ws1506, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    10. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    11. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    12. Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 331-350, June.
    13. Holger Dette & Pascal Quanz, 2023. "Detecting relevant changes in the spatiotemporal mean function," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 505-532, September.
    14. Rituparna Sen & Anandamayee Majumdar & Shubhangi Sikaria, 2022. "Bayesian Testing of Granger Causality in Functional Time Series," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 191-210, September.
    15. Menneteau, Ludovic, 2005. "Some laws of the iterated logarithm in Hilbertian autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 405-425, February.
    16. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski & Małgorzata Snarska, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
    17. Gregory Rice & Han Lin Shang, 2017. "A Plug-in Bandwidth Selection Procedure for Long-Run Covariance Estimation with Stationary Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 591-609, July.
    18. Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
    19. Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.
    20. Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2021. "Forecasting regional long-run energy demand: A functional coefficient panel approach," Energy Economics, Elsevier, vol. 96(C).
    21. Kada Kloucha, Meryem & Mourid, Tahar, 2019. "Best linear predictor of a C[0,1]-valued functional autoregressive process," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 114-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:86:y:2024:i:1:d:10.1007_s13171-023-00322-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.