IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v89y2024i1d10.1007_s11336-023-09946-1.html
   My bibliography  Save this article

A Multidimensional Model to Facilitate Within Person Comparison of Attributes

Author

Listed:
  • Mark L. Davison

    (University of Minnesota)

  • Seungwon Chung

    (US Food and Drug Administration)

  • Nidhi Kohli

    (University of Minnesota)

  • Ernest C. Davenport

    (University of Minnesota)

Abstract

In psychological research and practice, a person’s scores on two different traits or abilities are often compared. Such within-person comparisons require that measurements have equal units (EU) and/or equal origins: an assumption rarely validated. We describe a multidimensional SEM/IRT model from the literature and, using principles of conjoint measurement, show that its expected response variables satisfy the axioms of additive conjoint measurement for measurement on a common scale. In an application to Quality of Life data, the EU analysis is used as a pre-processing step to derive a simple structure Quality of Life model with three dimensions expressed in equal units. The results are used to address questions that can only be addressed by scores expressed in equal units. When the EU model fits the data, scores in the corresponding simple structure model will have added validity in that they can address questions that cannot otherwise be addressed. Limitations and the need for further research are discussed.

Suggested Citation

  • Mark L. Davison & Seungwon Chung & Nidhi Kohli & Ernest C. Davenport, 2024. "A Multidimensional Model to Facilitate Within Person Comparison of Attributes," Psychometrika, Springer;The Psychometric Society, vol. 89(1), pages 296-316, March.
  • Handle: RePEc:spr:psycho:v:89:y:2024:i:1:d:10.1007_s11336-023-09946-1
    DOI: 10.1007/s11336-023-09946-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-023-09946-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-023-09946-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yiu-Fai Yung & David Thissen & Lori McLeod, 1999. "On the relationship between the higher-order factor model and the hierarchical factor model," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 113-128, June.
    2. Ben Domingue, 2014. "Evaluating the Equal-Interval Hypothesis with Test Score Scales," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 1-19, January.
    3. Frank Rijmen & Minjeong Jeon & Matthias von Davier & Sophia Rabe-Hesketh, 2014. "A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 39(4), pages 235-256, August.
    4. Yoshio Takane & Jan Leeuw, 1987. "On the relationship between item response theory and factor analysis of discretized variables," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 393-408, September.
    5. Eric Bradlow & Howard Wainer & Xiaohui Wang, 1999. "A Bayesian random effects model for testlets," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 153-168, June.
    6. H. Brogden, 1977. "The rasch model, the law of comparative judgment and additive conjoint measurement," Psychometrika, Springer;The Psychometric Society, vol. 42(4), pages 631-634, December.
    7. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2018. "CFA Models with a General Factor and Multiple Sets of Secondary Factors," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 785-808, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2018. "CFA Models with a General Factor and Multiple Sets of Secondary Factors," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 785-808, December.
    2. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    3. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    4. Frank Rijmen & Minjeong Jeon & Matthias von Davier & Sophia Rabe-Hesketh, 2014. "A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 39(4), pages 235-256, August.
    5. Sayed H. Kadhem & Aristidis K. Nikoloulopoulos, 2023. "Bi-factor and Second-Order Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 132-157, March.
    6. Alexander Robitzsch, 2024. "A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items," Stats, MDPI, vol. 7(3), pages 1-16, June.
    7. R. Maximilian Bee & Tobias Koch & Michael Eid, 2023. "A General Theorem and Proof for the Identification of Composed CFA Models," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1334-1353, December.
    8. Quinn N. Lathrop & Ying Cheng, 2017. "Item Cloning Variation and the Impact on the Parameters of Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 245-263, March.
    9. Shelley H. Liu & Yitong Chen & Jordan R. Kuiper & Emily Ho & Jessie P. Buckley & Leah Feuerstahler, 2024. "Applying Latent Variable Models to Estimate Cumulative Exposure Burden to Chemical Mixtures and Identify Latent Exposure Subgroups: A Critical Review and Future Directions," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 482-502, July.
    10. Martijn G. de Jong & Jan-Benedict E. M. Steenkamp & Bernard P. Veldkamp, 2009. "A Model for the Construction of Country-Specific Yet Internationally Comparable Short-Form Marketing Scales," Marketing Science, INFORMS, vol. 28(4), pages 674-689, 07-08.
    11. Francesco Bartolucci & Ivonne Solis-Trapala, 2010. "Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 725-743, December.
    12. Yang Yixin & Lü Xin & Ma Jian & Qiao Han, 2014. "A Robust Factor Analysis Model for Dichotomous Data," Journal of Systems Science and Information, De Gruyter, vol. 2(5), pages 437-450, October.
    13. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    14. Thum, Anna-Elisabeth, 2013. "Psychology in econometric models: conceptual and methodological foundations," MPRA Paper 52293, University Library of Munich, Germany.
    15. Royce Anders & William Batchelder, 2015. "Cultural Consensus Theory for the Ordinal Data Case," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 151-181, March.
    16. Yikun Luo & Qipeng Chen & Jianyong Chen & Peida Zhan, 2024. "Development and validation of two shortened anxiety sensitive index-3 scales based on item response theory," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-7, December.
    17. Yang Liu, 2020. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 439-468, June.
    18. Xin Xu & Guanhua Fang & Jinxin Guo & Zhiliang Ying & Susu Zhang, 2024. "Diagnostic Classification Models for Testlets: Methods and Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 851-876, September.
    19. repec:osf:socarx:y6mnb_v1 is not listed on IDEAS
    20. Paul F M Krabbe, 2013. "A Generalized Measurement Model to Quantify Health: The Multi-Attribute Preference Response Model," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-12, November.
    21. Michela Gnaldi & Silvia Bacci & Thiemo Kunze & Samuel Greiff, 2020. "Students’ Complex Problem Solving Profiles," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 469-501, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:89:y:2024:i:1:d:10.1007_s11336-023-09946-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.