IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v83y2018i4d10.1007_s11336-018-9635-8.html
   My bibliography  Save this article

Outliers and Influential Observations in Exponential Random Graph Models

Author

Listed:
  • Johan Koskinen

    (University of Manchester
    The University of Melbourne
    University of Linköping)

  • Peng Wang

    (Swinburne University of Technology)

  • Garry Robins

    (The University of Melbourne)

  • Philippa Pattison

    (The University of Sydney)

Abstract

We discuss measuring and detecting influential observations and outliers in the context of exponential family random graph (ERG) models for social networks. We focus on the level of the nodes of the network and consider those nodes whose removal would result in changes to the model as extreme or “central” with respect to the structural features that “matter”. We construe removal in terms of two case-deletion strategies: the tie-variables of an actor are assumed to be unobserved, or the node is removed resulting in the induced subgraph. We define the difference in inferred model resulting from case deletion from the perspective of information theory and difference in estimates, in both the natural and mean-value parameterisation, representing varying degrees of approximation. We arrive at several measures of influence and propose the use of two that do not require refitting of the model and lend themselves to routine application in the ERGM fitting procedure. MCMC p values are obtained for testing how extreme each node is with respect to the network structure. The influence measures are applied to two well-known data sets to illustrate the information they provide. From a network perspective, the proposed statistics offer an indication of which actors are most distinctive in the network structure, in terms of not abiding by the structural norms present across other actors.

Suggested Citation

  • Johan Koskinen & Peng Wang & Garry Robins & Philippa Pattison, 2018. "Outliers and Influential Observations in Exponential Random Graph Models," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 809-830, December.
  • Handle: RePEc:spr:psycho:v:83:y:2018:i:4:d:10.1007_s11336-018-9635-8
    DOI: 10.1007/s11336-018-9635-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-018-9635-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-018-9635-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garry Robins & Philippa Pattison & Stanley Wasserman, 1999. "Logit models and logistic regressions for social networks: III. Valued relations," Psychometrika, Springer;The Psychometric Society, vol. 64(3), pages 371-394, September.
    2. Garry Robins & Philippa Pattison & Peter Elliott, 2001. "Network models for social influence processes," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 161-189, June.
    3. D. A. Williams, 1987. "Generalized Linear Model Diagnostics Using the Deviance and Single Case Deletions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(2), pages 181-191, June.
    4. Sonja Kuhnt, 2004. "Outlier Identification Procedures for Contingency Tables using Maximum Likelihood and L1 Estimates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 431-442, September.
    5. C J Rhodes & P Jones, 2009. "Inferring missing links in partially observed social networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(10), pages 1373-1383, October.
    6. Stanley Wasserman & Philippa Pattison, 1996. "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 401-425, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verena Bauer & Karl Fürlinger & Göran Kauermann, 2019. "A note on parallel sampling in Markov graphs," Computational Statistics, Springer, vol. 34(3), pages 1087-1107, September.
    2. Johan Koskinen & Galina Daraganova, 2022. "Bayesian analysis of social influence," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1855-1881, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes VAN DER POL, 2016. "The modelling of networks using Exponential Random Graph Models: an introduction," Cahiers du GREThA (2007-2019) 2016-22, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    2. Johannes van Der Pol, 2017. "Introduction to network modeling using Exponential Random Graph models (ERGM)," Working Papers hal-01284994, HAL.
    3. Johannes Pol, 2019. "Introduction to Network Modeling Using Exponential Random Graph Models (ERGM): Theory and an Application Using R-Project," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 845-875, October.
    4. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Ji Youn (Rose) Kim & Michael Howard & Emily Cox Pahnke & Warren Boeker, 2016. "Understanding network formation in strategy research: Exponential random graph models," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 22-44, January.
    5. Liu, Jie & Ge, Huilin, 2022. "Collaboration mechanisms and community detection of statisticians based on ERGMs and kNN-walktrap," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    6. Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
    7. Alessandro Lomi & Philippa Pattison, 2006. "Manufacturing Relations: An Empirical Study of the Organization of Production Across Multiple Networks," Organization Science, INFORMS, vol. 17(3), pages 313-332, June.
    8. Chu-Shore, Jesse, 2010. "Homogenization and Specialization Effects of International Trade: Are Cultural Goods Exceptional?," World Development, Elsevier, vol. 38(1), pages 37-47, January.
    9. Vögtle, Eva Maria & Windzio, Michael, 2015. "The network of international student mobility: Enlargement and consolidation of the European transnational education space?," TranState Working Papers 190, University of Bremen, Collaborative Research Center 597: Transformations of the State.
    10. He, Xi-jun & Dong, Yan-bo & Wu, Yu-ying & Jiang, Guo-rui & Zheng, Yao, 2019. "Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 443-457.
    11. Manuel E. Sosa & Steven D. Eppinger & Craig M. Rowles, 2004. "The Misalignment of Product Architecture and Organizational Structure in Complex Product Development," Management Science, INFORMS, vol. 50(12), pages 1674-1689, December.
    12. Slobodan Kacanski & Dean Lusher, 2017. "The Application of Social Network Analysis to Accounting and Auditing," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 7(3), pages 182-197, July.
    13. Tom Broekel & Pierre-Alexandre Balland & Martijn Burger & Frank Oort, 2014. "Modeling knowledge networks in economic geography: a discussion of four methods," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 423-452, September.
    14. Sebastian Spaeth & Sven Niederhöfer, 2022. "Compatibility promotion between platforms: The role of open technology standards and giant platforms," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 1891-1915, December.
    15. Ivan Cucco, 2014. "Network-based policies and innovation networks in two Italian regions: a comparison through a social selection model," STUDI ECONOMICI, FrancoAngeli Editore, vol. 2014(114), pages 78-96.
    16. Bruce A Desmarais & Skyler J Cranmer, 2012. "Statistical Inference for Valued-Edge Networks: The Generalized Exponential Random Graph Model," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-12, January.
    17. Olaf N. Rank & Garry L. Robins & Philippa E. Pattison, 2010. "Structural Logic of Intraorganizational Networks," Organization Science, INFORMS, vol. 21(3), pages 745-764, June.
    18. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    19. David Levinson & Arthur Huang, 2012. "A Positive Theory of Network Connectivity," Environment and Planning B, , vol. 39(2), pages 308-325, April.
    20. Lomi, Alessandro & Fonti, Fabio, 2012. "Networks in markets and the propensity of companies to collaborate: An empirical test of three mechanisms," Economics Letters, Elsevier, vol. 114(2), pages 216-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:83:y:2018:i:4:d:10.1007_s11336-018-9635-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.