IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v62y2025i2d10.1007_s12597-024-00829-2.html
   My bibliography  Save this article

Extended twin parametric margin support vector regression

Author

Listed:
  • Ali Sahleh

    (University of Guilan)

  • Maziar Salahi

    (University of Guilan)

  • Sadegh Eskandari

    (University of Guilan)

  • Tahereh Khodamoradi

    (University of Guilan)

Abstract

Support Vector Regression (SVR) and its extensions have demonstrated effectiveness in addressing regression problems, yet they face challenges, including high computational costs for large-scale datasets and sensitivity to outliers. To mitigate these limitations, various techniques such as twin SVR (TWSVR) and robust TWSVR (RTWSVR) have been proposed. However, existing approaches may suffer from issues like alignment of the final regressor with the dataset during the learning processes. In this paper, we introduce an extended twin parametric margin SVR (ETPMSVR) model inspired by the principles of robust geometric TPMSVM (RGTPSVM). The ETPMSVR addresses these challenges by integrating the average of $$\epsilon$$ ϵ -insensitive upper and lower bounds of the regressor into the objective function and constraints, ensuring alignment with the dataset and hence the final regerssor is found along with two boundary hyperplanes during the training process in a single quadratic programming problem. Additionally, a hinge-loss function is incorporated to enhance robustness against outliers. We derive the dual formulation to improve computational efficiency. Experiments on a diverse range of datasets, 10 UCI datasets and 8 S &P index datasets from financial market, demonstrate the efficacy of the proposed model in comparison to various benchmarks, including TWSVR, RTWSVR, multi-layer perceptron, and long short-term memory network.

Suggested Citation

  • Ali Sahleh & Maziar Salahi & Sadegh Eskandari & Tahereh Khodamoradi, 2025. "Extended twin parametric margin support vector regression," OPSEARCH, Springer;Operational Research Society of India, vol. 62(2), pages 682-705, June.
  • Handle: RePEc:spr:opsear:v:62:y:2025:i:2:d:10.1007_s12597-024-00829-2
    DOI: 10.1007/s12597-024-00829-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-024-00829-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-024-00829-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liao, Zhiqiang & Dai, Sheng & Kuosmanen, Timo, 2024. "Convex support vector regression," European Journal of Operational Research, Elsevier, vol. 313(3), pages 858-870.
    2. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan Lassance & Victor DeMiguel & Frédéric Vrins, 2022. "Optimal Portfolio Diversification via Independent Component Analysis," Operations Research, INFORMS, vol. 70(1), pages 55-72, January.
    2. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    3. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    4. Kang, Yan-li & Tian, Jing-Song & Chen, Chen & Zhao, Gui-Yu & Li, Yuan-fu & Wei, Yu, 2021. "Entropy based robust portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    5. Juan F. Monge & Mercedes Landete & Jos'e L. Ruiz, 2016. "Sharpe portfolio using a cross-efficiency evaluation," Papers 1610.00937, arXiv.org, revised Oct 2016.
    6. Victor DeMiguel & Francisco J. Nogales, 2009. "Portfolio Selection with Robust Estimation," Operations Research, INFORMS, vol. 57(3), pages 560-577, June.
    7. Hakan Kaya, 2017. "Managing ambiguity in asset allocation," Journal of Asset Management, Palgrave Macmillan, vol. 18(3), pages 163-187, May.
    8. Jules Sadefo-Kamdem, 2011. "Downside Risk And Kappa Index Of Non-Gaussian Portfolio With Lpm," Working Papers hal-00733043, HAL.
    9. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    10. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    11. Takafumi Kanamori & Akiko Takeda, 2012. "Worst-Case Violation of Sampled Convex Programs for Optimization with Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 152(1), pages 171-197, January.
    12. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    13. Fernando Ordóñez & Nicolás E. Stier-Moses, 2010. "Wardrop Equilibria with Risk-Averse Users," Transportation Science, INFORMS, vol. 44(1), pages 63-86, February.
    14. Paul Glasserman & Wanmo Kang, 2014. "OR Forum—Design of Risk Weights," Operations Research, INFORMS, vol. 62(6), pages 1204-1220, December.
    15. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    16. Huang, Ling-Wei & Shao, Yuan-Hai & Lv, Xiao-Jing & Li, Chun-Na, 2024. "Large-scale robust regression with truncated loss via majorization-minimization algorithm," European Journal of Operational Research, Elsevier, vol. 319(2), pages 494-504.
    17. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2017. "Penalizing variances for higher dependency on factors," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 479-489, April.
    18. Fonseca, Raquel J. & Rustem, Berç, 2012. "International portfolio management with affine policies," European Journal of Operational Research, Elsevier, vol. 223(1), pages 177-187.
    19. Geng Deng & Tim Dulaney & Craig McCann & Olivia Wang, 2013. "Robust portfolio optimization with Value-at-Risk-adjusted Sharpe ratios," Journal of Asset Management, Palgrave Macmillan, vol. 14(5), pages 293-305, October.
    20. Ben-Tal, A. & den Hertog, D. & De Waegenaere, A.M.B. & Melenberg, B. & Rennen, G., 2011. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Other publications TiSEM 4d43dc51-86d9-4804-8563-9, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:62:y:2025:i:2:d:10.1007_s12597-024-00829-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.