IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v25y2025i2d10.1007_s12351-025-00921-5.html
   My bibliography  Save this article

A note: approximation algorithms for batch scheduling on shops with job rejection

Author

Listed:
  • Gur Mosheiov

    (The Hebrew University
    Lev Academic Center)

  • Assaf Sarig

    (The Hebrew University)

Abstract

The most popular and cited model of batch scheduling was introduced and solved almost four decades ago. This pioneering model assumed a single machine, serial batching of unit-time jobs and batch-independent setup times. In the current note, we extend this setting by (i) allowing job-rejection, and (ii) considering flowshop and openshop. The objective function contains two cost components: sum of job completion times and total rejection cost. We introduce approximation algorithms for these problems, which are based on solving to optimality the relaxed versions (allowing non-integer batches) in the first stage, followed by rounding procedures to create integer batches. The results of our numerical tests verify that these efficient approximation algorithms produce very close-to-optimal schedules.

Suggested Citation

  • Gur Mosheiov & Assaf Sarig, 2025. "A note: approximation algorithms for batch scheduling on shops with job rejection," Operational Research, Springer, vol. 25(2), pages 1-14, June.
  • Handle: RePEc:spr:operea:v:25:y:2025:i:2:d:10.1007_s12351-025-00921-5
    DOI: 10.1007/s12351-025-00921-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-025-00921-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-025-00921-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shabtay, Dvir, 2014. "The single machine serial batch scheduling problem with rejection to minimize total completion time and total rejection cost," European Journal of Operational Research, Elsevier, vol. 233(1), pages 64-74.
    2. Gur Mosheiov & Vitaly A. Strusevich, 2017. "Determining optimal sizes of bounded batches with rejection via quadratic min‐cost flow," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 217-224, April.
    3. Juan Zou & Cuixia Miao, 2016. "The single machine serial batch scheduling problems with rejection," Operational Research, Springer, vol. 16(2), pages 211-221, July.
    4. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baruch Mor & Gur Mosheiov, 2022. "Single machine scheduling to maximize the weighted number of on-time jobs with job-rejection," Operational Research, Springer, vol. 22(3), pages 2707-2719, July.
    2. Li, Weidong & Ou, Jinwen, 2024. "Approximation algorithms for scheduling parallel machines with an energy constraint in green manufacturing," European Journal of Operational Research, Elsevier, vol. 314(3), pages 882-893.
    3. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    4. Nascimento, Paulo Jorge & Silva, Cristóvão & Antunes, Carlos Henggeler & Moniz, Samuel, 2024. "Optimal decomposition approach for solving large nesting and scheduling problems of additive manufacturing systems," European Journal of Operational Research, Elsevier, vol. 317(1), pages 92-110.
    5. Jia, Shuai & Li, Chung-Lun & Meng, Qiang, 2024. "The dry dock scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    6. Zipfel, Benedikt & Tamke, Felix & Kuttner, Leopold, 2025. "A new branch-and-cut approach for integrated planning in additive manufacturing," European Journal of Operational Research, Elsevier, vol. 322(2), pages 427-447.
    7. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    8. Jun-Qiang Wang & Guo-Qiang Fan & Zhixin Liu, 2020. "Mixed batch scheduling on identical machines," Journal of Scheduling, Springer, vol. 23(4), pages 487-496, August.
    9. Ou, Jinwen & Lu, Lingfa & Zhong, Xueling, 2023. "Parallel-batch scheduling with rejection: Structural properties and approximation algorithms," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1017-1032.
    10. Wu, Wei & Hayashi, Takito & Haruyasu, Kato & Tang, Liang, 2023. "Exact algorithms based on a constrained shortest path model for robust serial-batch and parallel-batch scheduling problems," European Journal of Operational Research, Elsevier, vol. 307(1), pages 82-102.
    11. Gur Mosheiov & Daniel Oron, 2023. "A note on batch scheduling on a two-machine flowshop with machine-dependent processing times," 4OR, Springer, vol. 21(3), pages 457-469, September.
    12. Xiaofei Liu & Weidong Li & Yaoyu Zhu, 2021. "Single Machine Vector Scheduling with General Penalties," Mathematics, MDPI, vol. 9(16), pages 1-16, August.
    13. Lin, Ran & Wang, Jun-Qiang & Liu, Zhixin & Xu, Jun, 2023. "Best possible algorithms for online scheduling on identical batch machines with periodic pulse interruptions," European Journal of Operational Research, Elsevier, vol. 309(1), pages 53-64.
    14. Lin, Ran & Wang, Jun-Qiang & Oulamara, Ammar, 2023. "Online scheduling on parallel-batch machines with periodic availability constraints and job delivery," Omega, Elsevier, vol. 116(C).
    15. Danny Hermelin & Matthias Mnich & Simon Omlor, 2024. "Serial batching to minimize the weighted number of tardy jobs," Journal of Scheduling, Springer, vol. 27(6), pages 545-556, December.
    16. Haskilic, Volkan & Ulucan, Aydin & Atici, Kazim Baris & Sarac, Seda Busra, 2023. "A real-world case of autoclave loading and scheduling problems in aerospace composite material production," Omega, Elsevier, vol. 120(C).
    17. Baruch Mor & Gur Mosheiov, 2018. "A note: minimizing total absolute deviation of job completion times on unrelated machines with general position-dependent processing times and job-rejection," Annals of Operations Research, Springer, vol. 271(2), pages 1079-1085, December.
    18. Yoshiaki Inoue, 2022. "A load-balancing problem for distributed bulk-service queues with size-dependent batch processing times," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 449-451, April.
    19. Toly Chen, 2016. "Competitive and Sustainable Manufacturing in the Age of Globalization," Sustainability, MDPI, vol. 9(1), pages 1-5, December.
    20. Wenchang Luo & Rylan Chin & Alexander Cai & Guohui Lin & Bing Su & An Zhang, 2022. "A tardiness-augmented approximation scheme for rejection-allowed multiprocessor rescheduling," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 690-722, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:25:y:2025:i:2:d:10.1007_s12351-025-00921-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.