IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v25y2025i2d10.1007_s12351-024-00889-8.html
   My bibliography  Save this article

A remanufacturing inventory optimization model for deteriorating items with volume flexibility

Author

Listed:
  • Neha Punetha

    (Shivalik College of Engineering)

  • S. R. Singh

    (CCS University)

  • Nidhi Handa

    (Gurukul Kangri (Deemed to Be University))

Abstract

In recent decades, there has been a significant increase in interest among organizations and businesses in adopting green supply chain practices. Despite the extensive research on this topic, a notable gap exists, particularly regarding the impacts of volume flexibility, deterioration, and preservation technology costs. Volume flexibility plays a crucial role in supply chain inventory models by enhancing agility and responsiveness. This enables businesses to better align production with changing market conditions, mitigate risks, and optimize resource utilization in a cost-effective manner. The aim of this study is to address these gaps by developing optimal inventory models for items that deteriorate instantaneously, within the context of remanufacturing in a volume-flexible environment. The focus is on a scenario involving a single producer and a single retailer, incorporating one manufacturer and remanufacturer cycle followed by multiple retailer cycles. The proposed model assumes that returned used goods are collected, sent back to the manufacturer, remanufactured, and then sold alongside newly manufactured items. Key decision variables include the finite production rate, which is treated as a function of the unit production cost. The mathematical formulation of the model is accompanied by optimization procedures using the proposed algorithms. The optimal solution to the green supply chain problem is determined through a comprehensive evaluation of factors such as production rate, preservation technology investment cost, cycle time, and overall joint cost. To validate the proposed model, numerical and sensitivity analyses are conducted.

Suggested Citation

  • Neha Punetha & S. R. Singh & Nidhi Handa, 2025. "A remanufacturing inventory optimization model for deteriorating items with volume flexibility," Operational Research, Springer, vol. 25(2), pages 1-47, June.
  • Handle: RePEc:spr:operea:v:25:y:2025:i:2:d:10.1007_s12351-024-00889-8
    DOI: 10.1007/s12351-024-00889-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-024-00889-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-024-00889-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Himani Dem & S.R. Singh, 2015. "Joint replenishment modelling of a multi-item system with greening policy and volume flexibility," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 22(2), pages 148-166.
    2. YuJan Shen & KuanFu Shen & ChihTe Yang, 2019. "A Production Inventory Model for Deteriorating Items with Collaborative Preservation Technology Investment Under Carbon Tax," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    3. Dye, Chung-Yuan & Yang, Chih-Te, 2016. "Optimal dynamic pricing and preservation technology investment for deteriorating products with reference price effects," Omega, Elsevier, vol. 62(C), pages 52-67.
    4. Dharmendra Yadav & Umesh Chand & Ruchi Goel & Biswajit Sarkar, 2023. "Smart Production System with Random Imperfect Process, Partial Backordering, and Deterioration in an Inflationary Environment," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    5. Dye, Chung-Yuan, 2013. "The effect of preservation technology investment on a non-instantaneous deteriorating inventory model," Omega, Elsevier, vol. 41(5), pages 872-880.
    6. Vandana & A. K. Das, 2022. "Two-warehouse supply chain model under preservation technology and stochastic demand with shortages," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1587-1612, December.
    7. Vandana & S. R. Singh & Dharmendra Yadav & Biswajit Sarkar & Mitali Sarkar, 2021. "Impact of Energy and Carbon Emission of a Supply Chain Management with Two-Level Trade-Credit Policy," Energies, MDPI, vol. 14(6), pages 1-19, March.
    8. Chung, Chun-Jen & Wee, Hui-Ming, 2011. "Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 195-203, January.
    9. Sana, Shib Sankar & Goyal, Suresh Kumar & Chaudhuri, Kripasindhu, 2007. "An imperfect production process in a volume flexible inventory model," International Journal of Production Economics, Elsevier, vol. 105(2), pages 548-559, February.
    10. AlDurgam, Mohammad & Adegbola, Kehinde & Glock, Christoph H., 2017. "A single-vendor single-manufacturer integrated inventory model with stochastic demand and variable production rate," International Journal of Production Economics, Elsevier, vol. 191(C), pages 335-350.
    11. AlDurgham, M. & Adegbola, K. & Glock, C. H., 2017. "A single-vendor single-manufacturer integrated inventory model with stochastic demand and variable production rate," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 87594, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Taleizadeh, Ata Allah & Moshtagh, Mohammad Sadegh & Vahedi-Nouri, Behdin & Sarkar, Biswajit, 2023. "New products or remanufactured products: Which is consumer-friendly under a closed-loop multi-level supply chain?," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherinne Salas-Navarro & Whady F. Florez & Leopoldo Eduardo Cárdenas-Barrón, 2024. "A vendor-managed inventory model for a three-layer supply chain considering exponential demand, imperfect system, and remanufacturing," Annals of Operations Research, Springer, vol. 332(1), pages 329-371, January.
    2. Nita H. Shah & Mamta Keswani & Uttam Kumar Khedlekar & Naisargi M. Prajapati, 2024. "Non-instantaneous controlled deteriorating inventory model for stock-price-advertisement dependent probabilistic demand under trade credit financing," OPSEARCH, Springer;Operational Research Society of India, vol. 61(1), pages 421-459, March.
    3. Ventura, José A. & Bunn, Kevin A. & Venegas, Bárbara B. & Duan, Lisha, 2021. "A coordination mechanism for supplier selection and order quantity allocation with price-sensitive demand and finite production rates," International Journal of Production Economics, Elsevier, vol. 233(C).
    4. Saha, Subrata & Chatterjee, Debajyoti & Sarkar, Biswajit, 2021. "The ramification of dynamic investment on the promotion and preservation technology for inventory management through a modified flower pollination algorithm," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    5. Chan, Chi Kin & Fang, Fei & Langevin, André, 2018. "Single-vendor multi-buyer supply chain coordination with stochastic demand," International Journal of Production Economics, Elsevier, vol. 206(C), pages 110-133.
    6. Faranak Emtehani & Nasim Nahavandi & Farimah Mokhatab Rafiei, 2021. "A joint inventory–finance model for coordinating a capital-constrained supply chain with financing limitations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-39, December.
    7. Herbon, Avi, 2020. "An approximated solution to the constrained integrated manufacturer-buyer supply problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    8. Feng, Lin & Wang, Wan-Chih & Teng, Jinn-Tsair & Cárdenas-Barrón, Leopoldo Eduardo, 2022. "Pricing and lot-sizing decision for fresh goods when demand depends on unit price, displaying stocks and product age under generalized payments," European Journal of Operational Research, Elsevier, vol. 296(3), pages 940-952.
    9. Wakhid Ahmad Jauhari & I Nyoman Pujawan & Mokh Suef, 2023. "Sustainable inventory management with hybrid production system and investment to reduce defects," Annals of Operations Research, Springer, vol. 324(1), pages 543-572, May.
    10. Dhahri, Akrem & Gharbi, Ali & Ouhimmou, Mustapha, 2022. "Integrated production-delivery control policy for an unreliable manufacturing system and multiple retailers," International Journal of Production Economics, Elsevier, vol. 245(C).
    11. Asif Iqbal Malik & Biswajit Sarkar, 2020. "Coordination Supply Chain Management Under Flexible Manufacturing, Stochastic Leadtime Demand, and Mixture of Inventory," Mathematics, MDPI, vol. 8(6), pages 1-32, June.
    12. Liu, Hengyu & Zhang, Juliang & Zhou, Chen & Ru, Yihong, 2018. "Optimal purchase and inventory retrieval policies for perishable seasonal agricultural products," Omega, Elsevier, vol. 79(C), pages 133-145.
    13. Zhao, Yan & Li, Yanhui & Yao, Qi & Guan, Xu, 2023. "Dual-channel retailing strategy vs. omni-channel buy-online-and-pick-up-in-store behaviors with reference freshness effect," International Journal of Production Economics, Elsevier, vol. 263(C).
    14. Bikash Koli Dey & Hyesung Seok & Kwanghun Chung, 2024. "Optimal Decisions on Greenness, Carbon Emission Reductions, and Flexibility for Imperfect Production with Partial Outsourcing," Mathematics, MDPI, vol. 12(5), pages 1-29, February.
    15. Utama, Dana Marsetiya & Santoso, Imam & Hendrawan, Yusuf & Dania, Wike Agustin Prima, 2022. "Integrated procurement-production inventory model in supply chain: A systematic review," Operations Research Perspectives, Elsevier, vol. 9(C).
    16. Asif Iqbal Malik & Byung Soo Kim, 2020. "A Constrained Production System Involving Production Flexibility and Carbon Emissions," Mathematics, MDPI, vol. 8(2), pages 1-21, February.
    17. Chaitanyakumar N. Rapolu & Deepa H. Kandpal, 2020. "Joint pricing, advertisement, preservation technology investment and inventory policies for non-instantaneous deteriorating items under trade credit," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 274-300, June.
    18. Yue Xie & Allen H. Tai & Wai-Ki Ching & Yong-Hong Kuo & Na Song, 2021. "Joint inspection and inventory control for deteriorating items with time-dependent demand and deteriorating rate," Annals of Operations Research, Springer, vol. 300(1), pages 225-265, May.
    19. Sudip Adak & G. S. Mahapatra, 2021. "Effect of inspection and rework of probabilistic defective production on two-layer supply chain incorporating deterioration and reliability dependent demand," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 565-578, June.
    20. Herbon, Avi, 2021. "An integrated manufacturer-buyer chain with bounded production cycle length," Operations Research Perspectives, Elsevier, vol. 8(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:25:y:2025:i:2:d:10.1007_s12351-024-00889-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.