IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i5d10.1007_s12351-020-00597-z.html
   My bibliography  Save this article

Modified differential evolution and heuristic algorithms for dump tippler machine allocation in a typical sugar mill in Thailand

Author

Listed:
  • Chuleeporn Kusoncum

    (Khon Kaen University)

  • Kanchana Sethanan

    (University of Vienna)

  • Richard F. Hartl

    (Khon Kaen University)

  • Thitipong Jamrus

    (Khon Kaen University)

Abstract

This paper focuses on a computational tool for scheduling and sequencing sugarcane vehicles for dump tippler machines at the mill yard of a sugar mill, which can be represented as an NP-hard problem for parallel capacitated machines with machine restrictions, job grouping, and sequencing independent setup time. This research aims to determine the optimal sequencing of jobs, i.e. minimizing the makespan by considering machine restrictions, capacitated machines, group size, number of jobs, and the constraints of the sugar mill. In the considered problem machines alternatively operate, that distinguishes it from a general parallel machine problem. The mixed integer linear programing model is developed for solving the small-scale problem instances. Large-scale instances are handled by four heuristics, and four differential evolution (DE) metaheuristics. In order to improve the computational results, solution quality and computation time were considered. In addition, modified DE algorithms were used in encoding operation (initial solution), mutation and local search operation. The computational results revealed that the modified DE algorithms had higher relative improvement on the makespan. Furthermore, this decision-making support tool was implemented as a prototype in the sector of cane and sugar industry in Thailand and extended to other similar industries.

Suggested Citation

  • Chuleeporn Kusoncum & Kanchana Sethanan & Richard F. Hartl & Thitipong Jamrus, 2022. "Modified differential evolution and heuristic algorithms for dump tippler machine allocation in a typical sugar mill in Thailand," Operational Research, Springer, vol. 22(5), pages 5863-5895, November.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-020-00597-z
    DOI: 10.1007/s12351-020-00597-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-020-00597-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-020-00597-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martinez, S. & Dauzere-Peres, S. & Gueret, C. & Mati, Y. & Sauer, N., 2006. "Complexity of flowshop scheduling problems with a new blocking constraint," European Journal of Operational Research, Elsevier, vol. 169(3), pages 855-864, March.
    2. Iannoni, Ana Paula & Morabito, Reinaldo, 2006. "A discrete simulation analysis of a logistics supply system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(3), pages 191-210, May.
    3. Leung, Joseph Y.-T. & Li, Chung-Lun, 2008. "Scheduling with processing set restrictions: A survey," International Journal of Production Economics, Elsevier, vol. 116(2), pages 251-262, December.
    4. Darat Dechampai & Ladda Tanwanichkul & Kanchana Sethanan & Rapeepan Pitakaso, 2017. "A differential evolution algorithm for the capacitated VRP with flexibility of mixing pickup and delivery services and the maximum duration of a route in poultry industry," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1357-1376, August.
    5. Mahmoud Masoud & Erhan Kozan & Geoff Kent, 2015. "Hybrid metaheuristic techniques for optimising sugarcane rail operations," International Journal of Production Research, Taylor & Francis Journals, vol. 53(9), pages 2569-2589, May.
    6. Nearchou, Andreas C., 2006. "Meta-heuristics from nature for the loop layout design problem," International Journal of Production Economics, Elsevier, vol. 101(2), pages 312-328, June.
    7. Jinwen Ou & Joseph Y.‐T. Leung & Chung‐Lun Li, 2008. "Scheduling parallel machines with inclusive processing set restrictions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 328-338, June.
    8. Nait Tahar, Djamel & Yalaoui, Farouk & Chu, Chengbin & Amodeo, Lionel, 2006. "A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 63-73, February.
    9. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    10. Scott Webster & Kenneth R. Baker, 1995. "Scheduling Groups of Jobs on a Single Machine," Operations Research, INFORMS, vol. 43(4), pages 692-703, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Zhou, 2023. "Airline capacity distribution under financial budget and resource consideration," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuguang, 2017. "Parallel batch scheduling with inclusive processing set restrictions and non-identical capacities to minimize makespan," European Journal of Operational Research, Elsevier, vol. 260(1), pages 12-20.
    2. Dominik Kress & Sebastian Meiswinkel & Erwin Pesch, 2018. "Mechanism design for machine scheduling problems: classification and literature overview," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 583-611, July.
    3. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    4. Cheng, T. C. Edwin & Janiak, Adam & Kovalyov, Mikhail Y., 2001. "Single machine batch scheduling with resource dependent setup and processing times," European Journal of Operational Research, Elsevier, vol. 135(1), pages 177-183, November.
    5. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    6. Selvarajah, Esaignani & Steiner, George, 2006. "Batch scheduling in a two-level supply chain--a focus on the supplier," European Journal of Operational Research, Elsevier, vol. 173(1), pages 226-240, August.
    7. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).
    8. Chang, Yung-Chia & Lee, Chung-Yee, 2004. "Machine scheduling with job delivery coordination," European Journal of Operational Research, Elsevier, vol. 158(2), pages 470-487, October.
    9. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    10. Grundel, Soesja & Çiftçi, Barış & Borm, Peter & Hamers, Herbert, 2013. "Family sequencing and cooperation," European Journal of Operational Research, Elsevier, vol. 226(3), pages 414-424.
    11. Schaller, Jeffrey, 2007. "Scheduling on a single machine with family setups to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 105(2), pages 329-344, February.
    12. Jia, Zhao-hong & Li, Kai & Leung, Joseph Y.-T., 2015. "Effective heuristic for makespan minimization in parallel batch machines with non-identical capacities," International Journal of Production Economics, Elsevier, vol. 169(C), pages 1-10.
    13. repec:dgr:rugsom:02a68 is not listed on IDEAS
    14. Kovalyov, M. Y. & Potts, C. N. & Strusevich, V. A., 2004. "Batching decisions for assembly production systems," European Journal of Operational Research, Elsevier, vol. 157(3), pages 620-642, September.
    15. Zee, Durk Jouke van der, 2002. "Look-ahead strategies for controlling batch operations in industry : basic insights in rule construction," Research Report 02A68, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    16. Liji Shen & Jatinder N. D. Gupta, 2018. "Family scheduling with batch availability in flow shops to minimize makespan," Journal of Scheduling, Springer, vol. 21(2), pages 235-249, April.
    17. Jinwen Ou, 2020. "Near-linear-time approximation algorithms for scheduling a batch-processing machine with setups and job rejection," Journal of Scheduling, Springer, vol. 23(5), pages 525-538, October.
    18. Chung Keung Poon & Wenci Yu, 2005. "On-Line Scheduling Algorithms for a Batch Machine with Finite Capacity," Journal of Combinatorial Optimization, Springer, vol. 9(2), pages 167-186, March.
    19. Jae-Min Yu & Rong Huang & Dong-Ho Lee, 2017. "Iterative algorithms for batching and scheduling to minimise the total job tardiness in two-stage hybrid flow shops," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3266-3282, June.
    20. Xianglai Qi & Jinjiang Yuan, 2017. "Semi-online hierarchical scheduling for $$l_p$$ l p -norm load balancing with buffer or rearrangements," 4OR, Springer, vol. 15(3), pages 265-276, September.
    21. Lin, B.M.T. & Cheng, T.C.E. & Chou, A.S.C., 2007. "Scheduling in an assembly-type production chain with batch transfer," Omega, Elsevier, vol. 35(2), pages 143-151, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-020-00597-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.