IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i4d10.1007_s12351-021-00663-0.html
   My bibliography  Save this article

Decomposition algorithm for the multi-trip single vehicle routing problem with AND-type precedence constraints

Author

Listed:
  • Mina Roohnavazfar

    (Kharazmi University
    Politecnico di Torino)

  • Seyed Hamid Reza Pasandideh

    (Kharazmi University)

Abstract

This paper addresses a new variant of the multi-trip single vehicle routing problem where the nodes are related to each other through AND-type precedence constraints. The problem aims at determining a sequence of trips to visit all the nodes respecting every precedence constraint within and among the routes so to minimize the total traveling cost. Our motivation comes from routing problems where a node may have a set of predecessors (not just single one proposed in the dial-a-ride or pickup and delivery problems) resulting in a set of pairwise relations that specify which customers need to be visited before which other ones. We develop three Mixed Integer Programming models to formulate the problem. The models are experimentally compared to determine the best one. Moreover, a solution approach based on the Logic-Based Benders Decomposition algorithm is developed which allows to decompose the original problem into an assignment master problem and independent sequencing subproblems. A new valid optimality cut is devised to achieve faster convergence. The cut performance is experimentally investigated by comparing with a recently proposed one in the literature. We further relax the algorithm to find the sub-optimal solution and demonstrate its efficiency. Extensive computational experiments are conducted to assess the proposed algorithms in terms of solution quality and CPU time.

Suggested Citation

  • Mina Roohnavazfar & Seyed Hamid Reza Pasandideh, 2022. "Decomposition algorithm for the multi-trip single vehicle routing problem with AND-type precedence constraints," Operational Research, Springer, vol. 22(4), pages 4253-4285, September.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:4:d:10.1007_s12351-021-00663-0
    DOI: 10.1007/s12351-021-00663-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-021-00663-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-021-00663-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    2. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates," Transportation Science, INFORMS, vol. 50(2), pages 676-693, May.
    3. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    4. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2007. "An exact algorithm for a single-vehicle routing problem with time windows and multiple routes," European Journal of Operational Research, Elsevier, vol. 178(3), pages 755-766, May.
    5. Moon, Chiung & Kim, Jongsoo & Choi, Gyunghyun & Seo, Yoonho, 2002. "An efficient genetic algorithm for the traveling salesman problem with precedence constraints," European Journal of Operational Research, Elsevier, vol. 140(3), pages 606-617, August.
    6. Unsal, Ozgur & Oguz, Ceyda, 2019. "An exact algorithm for integrated planning of operations in dry bulk terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 103-121.
    7. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    8. Barzanji, Ramin & Naderi, Bahman & Begen, Mehmet A., 2020. "Decomposition algorithms for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 93(C).
    9. Zulj, I. & Glock, C. H. & Grosse, E. H. & Schneider, Michael, 2018. "Picker routing and storage-assignment strategies for precedence-constrained order picking," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 105391, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    11. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    12. Thomas Chabot & Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2017. "Order picking problems under weight, fragility and category constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6361-6379, November.
    13. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    14. Matusiak, Marek & de Koster, René & Kroon, Leo & Saarinen, Jari, 2014. "A fast simulated annealing method for batching precedence-constrained customer orders in a warehouse," European Journal of Operational Research, Elsevier, vol. 236(3), pages 968-977.
    15. Mohammad M. Fazel-Zarandi & J. Christopher Beck, 2012. "Using Logic-Based Benders Decomposition to Solve the Capacity- and Distance-Constrained Plant Location Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 387-398, August.
    16. Zhang, An & Qi, Xiangtong & Li, Guanhua, 2020. "Machine scheduling with soft precedence constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 491-505.
    17. D. Prot & O. Bellenguez-Morineau, 2018. "A survey on how the structure of precedence constraints may change the complexity class of scheduling problems," Journal of Scheduling, Springer, vol. 21(1), pages 3-16, February.
    18. R. Dekker & M. B. M. de Koster & K. J. Roodbergen & H. van Kalleveen, 2004. "Improving Order-Picking Response Time at Ankor's Warehouse," Interfaces, INFORMS, vol. 34(4), pages 303-313, August.
    19. Rivera, Juan Carlos & Murat Afsar, H. & Prins, Christian, 2016. "Mathematical formulations and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 249(1), pages 93-104.
    20. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    21. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Rasinmäki, Jussi, 2019. "Multiple vehicle synchronisation in a full truck-load pickup and delivery problem: A case-study in the biomass supply chain," European Journal of Operational Research, Elsevier, vol. 277(1), pages 174-194.
    22. Bredström, David & Rönnqvist, Mikael, 2008. "Combined vehicle routing and scheduling with temporal precedence and synchronization constraints," European Journal of Operational Research, Elsevier, vol. 191(1), pages 19-31, November.
    23. Riise, Atle & Mannino, Carlo & Lamorgese, Leonardo, 2016. "Recursive logic-based Benders’ decomposition for multi-mode outpatient scheduling," European Journal of Operational Research, Elsevier, vol. 255(3), pages 719-728.
    24. Gedik, Ridvan & Rainwater, Chase & Nachtmann, Heather & Pohl, Ed A., 2016. "Analysis of a parallel machine scheduling problem with sequence dependent setup times and job availability intervals," European Journal of Operational Research, Elsevier, vol. 251(2), pages 640-650.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    2. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    3. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    4. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    5. Lu, Chang & Wu, Yuehui & Yu, Shanchuan, 2022. "A Sample Average Approximation Approach for the Stochastic Dial-A-Ride Problem on a Multigraph with User Satisfaction," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1031-1044.
    6. Su, Yue & Dupin, Nicolas & Puchinger, Jakob, 2023. "A deterministic annealing local search for the electric autonomous dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1091-1111.
    7. Gaul, Daniela & Klamroth, Kathrin & Stiglmayr, Michael, 2022. "Event-based MILP models for ridepooling applications," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1048-1063.
    8. Pan, Binbin & Zhang, Zhenzhen & Lim, Andrew, 2021. "Multi-trip time-dependent vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 291(1), pages 218-231.
    9. MELIS, Lissa & SÖRENSEN, Kenneth, 2021. "The real-time on-demand bus routing problem: What is the cost of dynamic requests?," Working Papers 2021003, University of Antwerp, Faculty of Business and Economics.
    10. Maria A. M. Trindade & Paulo S. A. Sousa & Maria R. A. Moreira, 2022. "Ramping up a heuristic procedure for storage location assignment problem with precedence constraints," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 646-669, September.
    11. Lian, Ying & Lucas, Flavien & Sörensen, Kenneth, 2024. "Prepositioning can improve the performance of a dynamic stochastic on-demand public bus system," European Journal of Operational Research, Elsevier, vol. 312(1), pages 338-356.
    12. Hassan Zohali & Bahman Naderi & Vahid Roshanaei, 2022. "Solving the Type-2 Assembly Line Balancing with Setups Using Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 315-332, January.
    13. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    14. Schulz, Arne & Pfeiffer, Christian, 2024. "Using fixed paths to improve branch-and-cut algorithms for precedence-constrained routing problems," European Journal of Operational Research, Elsevier, vol. 312(2), pages 456-472.
    15. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    16. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.
    17. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    18. Johnsen, Lennart C. & Meisel, Frank, 2022. "Interrelated trips in the rural dial-a-ride problem with autonomous vehicles," European Journal of Operational Research, Elsevier, vol. 303(1), pages 201-219.
    19. Farshad Majzoubi & Lihui Bai & Sunderesh S. Heragu, 2021. "The EMS vehicle patient transportation problem during a demand surge," Journal of Global Optimization, Springer, vol. 79(4), pages 989-1006, April.
    20. Liu, Chuanju & Zhang, Junlong & Lin, Shaochong & Shen, Zuo-Jun Max, 2023. "Service network design with consistent multiple trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:4:d:10.1007_s12351-021-00663-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.