IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v251y2016i2p640-650.html
   My bibliography  Save this article

Analysis of a parallel machine scheduling problem with sequence dependent setup times and job availability intervals

Author

Listed:
  • Gedik, Ridvan
  • Rainwater, Chase
  • Nachtmann, Heather
  • Pohl, Ed A.

Abstract

In this study, we propose constraint programming (CP) model and logic-based Benders algorithms in order to make the best decisions for scheduling non-identical jobs with availability intervals and sequence dependent setup times on unrelated parallel machines in a fixed planning horizon. In this problem, each job has a profit, cost and must be assigned to at most one machine in such a way that total profit is maximized. In addition, the total cost has to be less than or equal to a budget level. Computational tests are performed on a real-life case study prepared in collaboration with the U.S. Army Corps of Engineers (USACE). Our initial investigations show that the pure CP model is very efficient in obtaining good quality feasible solutions but, fails to report the optimal solution for the majority of the problem instances. On the other hand, the two logic-based Benders decomposition algorithms are able to obtain near optimal solutions for 86 instances out of 90 examinees. For the remaining instances, they provide a feasible solution. Further investigations show the high quality of the solutions obtained by the pure CP model.

Suggested Citation

  • Gedik, Ridvan & Rainwater, Chase & Nachtmann, Heather & Pohl, Ed A., 2016. "Analysis of a parallel machine scheduling problem with sequence dependent setup times and job availability intervals," European Journal of Operational Research, Elsevier, vol. 251(2), pages 640-650.
  • Handle: RePEc:eee:ejores:v:251:y:2016:i:2:p:640-650
    DOI: 10.1016/j.ejor.2015.11.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715010693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.11.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruslan Sadykov & Laurence A. Wolsey, 2006. "Integer Programming and Constraint Programming in Solving a Multimachine Assignment Scheduling Problem with Deadlines and Release Dates," INFORMS Journal on Computing, INFORMS, vol. 18(2), pages 209-217, May.
    2. J.M. van den Akker & C.A.J. Hurkens & M.W.P. Savelsbergh, 2000. "Time-Indexed Formulations for Machine Scheduling Problems: Column Generation," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 111-124, May.
    3. Türsel Eliiyi, Deniz & Azizoglu, Meral, 2011. "Heuristics for operational fixed job scheduling problems with working and spread time constraints," International Journal of Production Economics, Elsevier, vol. 132(1), pages 107-121, July.
    4. W L Pearn & S H Chung & M H Yang, 2002. "The wafer probing scheduling problem (WPSP)," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(8), pages 864-874, August.
    5. Vipul Jain & Ignacio E. Grossmann, 2001. "Algorithms for Hybrid MILP/CP Models for a Class of Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 258-276, November.
    6. Siwate Rojanasoonthon & Jonathan Bard, 2005. "A GRASP for Parallel Machine Scheduling with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 32-51, February.
    7. Kroon, Leo G. & Salomon, Marc & Van Wassenhove, Luk N., 1995. "Exact and approximation algorithms for the operational fixed interval scheduling problem," European Journal of Operational Research, Elsevier, vol. 82(1), pages 190-205, April.
    8. J. N. Hooker, 2007. "Planning and Scheduling by Logic-Based Benders Decomposition," Operations Research, INFORMS, vol. 55(3), pages 588-602, June.
    9. John N. Hooker, 2002. "Logic, Optimization, and Constraint Programming," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 295-321, November.
    10. S Heipcke, 1999. "Comparing constraint programming and mathematical programming approaches to discrete optimisation—the change problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(6), pages 581-595, June.
    11. SADYKOV, Ruslan & WOLSEY, Laurence A., 2006. "Integer programming and constraint programming in solving a multimachine assignment scheduling problem with deadlines and release dates," LIDAM Reprints CORE 1854, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. R. Rodosek & M.G. Wallace & M.T. Hajian, 1999. "A new approach to integrating mixed integer programming and constraint logicprogramming," Annals of Operations Research, Springer, vol. 86(0), pages 63-87, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    2. Boccia, Maurizio & Masone, Adriano & Sterle, Claudio & Murino, Teresa, 2023. "The parallel AGV scheduling problem with battery constraints: A new formulation and a matheuristic approach," European Journal of Operational Research, Elsevier, vol. 307(2), pages 590-603.
    3. Xiong, Hegen & Fan, Huali & Jiang, Guozhang & Li, Gongfa, 2017. "A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints," European Journal of Operational Research, Elsevier, vol. 257(1), pages 13-24.
    4. Emine Akyol Ozer & Tugba Sarac, 2019. "MIP models and a matheuristic algorithm for an identical parallel machine scheduling problem under multiple copies of shared resources constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 94-124, April.
    5. Allahverdi, Ali & Aydilek, Harun & Aydilek, Asiye, 2018. "No-wait flowshop scheduling problem with two criteria; total tardiness and makespan," European Journal of Operational Research, Elsevier, vol. 269(2), pages 590-601.
    6. Enayaty-Ahangar, Forough & Rainwater, Chase E. & Sharkey, Thomas C., 2019. "A Logic-based Decomposition Approach for Multi-Period Network Interdiction Models," Omega, Elsevier, vol. 87(C), pages 71-85.
    7. Mina Roohnavazfar & Seyed Hamid Reza Pasandideh, 2022. "Decomposition algorithm for the multi-trip single vehicle routing problem with AND-type precedence constraints," Operational Research, Springer, vol. 22(4), pages 4253-4285, September.
    8. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Velez, Sara & Dong, Yachao & Maravelias, Christos T., 2017. "Changeover formulations for discrete-time mixed-integer programming scheduling models," European Journal of Operational Research, Elsevier, vol. 260(3), pages 949-963.
    2. Elvin Coban & J. Hooker, 2013. "Single-facility scheduling by logic-based Benders decomposition," Annals of Operations Research, Springer, vol. 210(1), pages 245-272, November.
    3. Lotte Berghman & Roel Leus & Frits Spieksma, 2014. "Optimal solutions for a dock assignment problem with trailer transportation," Annals of Operations Research, Springer, vol. 213(1), pages 3-25, February.
    4. Raf Jans, 2009. "Solving Lot-Sizing Problems on Parallel Identical Machines Using Symmetry-Breaking Constraints," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 123-136, February.
    5. Enayaty-Ahangar, Forough & Rainwater, Chase E. & Sharkey, Thomas C., 2019. "A Logic-based Decomposition Approach for Multi-Period Network Interdiction Models," Omega, Elsevier, vol. 87(C), pages 71-85.
    6. Tallys Yunes & Ionuţ D. Aron & J. N. Hooker, 2010. "An Integrated Solver for Optimization Problems," Operations Research, INFORMS, vol. 58(2), pages 342-356, April.
    7. Luca Benini & Michele Lombardi & Michela Milano & Martino Ruggiero, 2011. "Optimal resource allocation and scheduling for the CELL BE platform," Annals of Operations Research, Springer, vol. 184(1), pages 51-77, April.
    8. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    9. Sadykov, Ruslan, 2008. "A branch-and-check algorithm for minimizing the weighted number of late jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1284-1304, September.
    10. Vipul Jain & Ignacio E. Grossmann, 2001. "Algorithms for Hybrid MILP/CP Models for a Class of Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 258-276, November.
    11. Riise, Atle & Mannino, Carlo & Lamorgese, Leonardo, 2016. "Recursive logic-based Benders’ decomposition for multi-mode outpatient scheduling," European Journal of Operational Research, Elsevier, vol. 255(3), pages 719-728.
    12. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    13. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    14. Li, Haitao & Womer, Keith, 2012. "Optimizing the supply chain configuration for make-to-order manufacturing," European Journal of Operational Research, Elsevier, vol. 221(1), pages 118-128.
    15. Polyakovskiy, Sergey & M’Hallah, Rym, 2021. "Just-in-time two-dimensional bin packing," Omega, Elsevier, vol. 102(C).
    16. Stefano Gualandi & Federico Malucelli, 2012. "Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 81-100, February.
    17. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
    18. Yantong Li & Jean-François Côté & Leandro Callegari-Coelho & Peng Wu, 2022. "Novel Formulations and Logic-Based Benders Decomposition for the Integrated Parallel Machine Scheduling and Location Problem," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1048-1069, March.
    19. Yannis Pavlis & Will Recker, 2009. "A Mathematical Logic Approach for the Transformation of the Linear Conditional Piecewise Functions of Dispersion-and-Store and Cell Transmission Traffic Flow Models into Linear Mixed-Integer Form," Transportation Science, INFORMS, vol. 43(1), pages 98-116, February.
    20. Wheatley, David & Gzara, Fatma & Jewkes, Elizabeth, 2015. "Logic-based Benders decomposition for an inventory-location problem with service constraints," Omega, Elsevier, vol. 55(C), pages 10-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:251:y:2016:i:2:p:640-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.