IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v17y2017i3d10.1007_s12351-016-0263-8.html
   My bibliography  Save this article

Potential of gas microturbines for integration in commercial laundries

Author

Listed:
  • Vítězslav Máša

    (Brno University of Technology)

  • Petr Bobák

    (Brno University of Technology)

  • Marek Vondra

    (Brno University of Technology)

Abstract

Cogeneration of electrical energy and heat has become a steadily growing and flourishing segment of energy industry. Application potential of microturbines moved from back-up sources for electrical energy and island operation systems, and expended as a combined source for electrical energy and heat in commercial facilities and residential premises. In this paper, we wish to present an analysis of gas microturbine integration in a commercial laundry. We opted for a professional laundry care since it is a common representative of a well-known process which requires a lot of energy input. We focus on commercial laundries with a capacity over 1000 kg of processed laundry per shift. This type of laundries is very common and has a large innovation potential. The gas microturbine was considered as a cogeneration unit as it has a process-adequate performance (30 kWe). Its flue gas helps heat main laundry input flows: hot water for the washing machines and hot flue gas for the dryers. Incorporation of a progressive technology with a common commercial process gives us a promising application potential for our work. Prices of commercial microturbines are still rather high and short payback period may be expected only if very specific conditions are met.

Suggested Citation

  • Vítězslav Máša & Petr Bobák & Marek Vondra, 2017. "Potential of gas microturbines for integration in commercial laundries," Operational Research, Springer, vol. 17(3), pages 849-866, October.
  • Handle: RePEc:spr:operea:v:17:y:2017:i:3:d:10.1007_s12351-016-0263-8
    DOI: 10.1007/s12351-016-0263-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-016-0263-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-016-0263-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaikko, Juha & Backman, Jari, 2007. "Technical and economic performance analysis for a microturbine in combined heat and power generation," Energy, Elsevier, vol. 32(4), pages 378-387.
    2. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Current utilization of microturbines as a part of a hybrid system in distributed generation technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 142-152.
    3. Comodi, G. & Renzi, M. & Caresana, F. & Pelagalli, L., 2015. "Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique," Applied Energy, Elsevier, vol. 147(C), pages 40-48.
    4. De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2012. "Steam injection experiments in a microturbine – A thermodynamic performance analysis," Applied Energy, Elsevier, vol. 97(C), pages 569-576.
    5. Seljak, Tine & Rodman Oprešnik, Samuel & Katrašnik, Tomaž, 2014. "Microturbine combustion and emission characterisation of waste polymer-derived fuels," Energy, Elsevier, vol. 77(C), pages 226-234.
    6. Rachtan, W. & Malinowski, L., 2013. "An approximate expression for part-load performance of a microturbine combined heat and power system heat recovery unit," Energy, Elsevier, vol. 51(C), pages 146-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konečná, Eva & Máša, Vítězslav & Miklas, Václav & Slovák, Rostislav & Jördening, Alexandra & Blaha, Vladimír, 2023. "Gas microturbine as a main source of energy for industrial laundry – feasibility study," Energy, Elsevier, vol. 267(C).
    2. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Comodi, Gabriele & Renzi, Massimiliano & Cioccolanti, Luca & Caresana, Flavio & Pelagalli, Leonardo, 2015. "Hybrid system with micro gas turbine and PV (photovoltaic) plant: Guidelines for sizing and management strategies," Energy, Elsevier, vol. 89(C), pages 226-235.
    2. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Duan, Jiandong & Fan, Shaogui & An, Quntao & Sun, Li & Wang, Guanglin, 2017. "A comparison of micro gas turbine operation modes for optimal efficiency based on a nonlinear model," Energy, Elsevier, vol. 134(C), pages 400-411.
    4. De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2013. "Water injection in a micro gas turbine – Assessment of the performance using a black box method," Applied Energy, Elsevier, vol. 112(C), pages 1291-1302.
    5. Stathopoulos, P. & Paschereit, C.O., 2015. "Retrofitting micro gas turbines for wet operation. A way to increase operational flexibility in distributed CHP plants," Applied Energy, Elsevier, vol. 154(C), pages 438-446.
    6. Xu, Zhen & Lu, Yuan & Wang, Bo & Zhao, Lifeng & Chen, Changnian & Xiao, Yunhan, 2019. "Experimental evaluation of 100 kW grade micro humid air turbine cycles converted from a microturbine," Energy, Elsevier, vol. 175(C), pages 687-693.
    7. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    8. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    9. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
    10. Díaz, Guzmán & Planas, Estefanía & Andreu, Jon & Kortabarria, Iñigo, 2015. "Joint cost of energy under an optimal economic policy of hybrid power systems subject to uncertainty," Energy, Elsevier, vol. 88(C), pages 837-848.
    11. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    12. Comodi, G. & Renzi, M. & Caresana, F. & Pelagalli, L., 2015. "Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique," Applied Energy, Elsevier, vol. 147(C), pages 40-48.
    13. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    14. Caresana, Flavio & Brandoni, Caterina & Feliciotti, Petro & Bartolini, Carlo Maria, 2011. "Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator," Applied Energy, Elsevier, vol. 88(3), pages 659-671, March.
    15. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
    16. Athawale, Rasika & Felder, Frank A. & Goldman, Leo A., 2016. "Do Combined Heat and Power plants perform? Case study of publicly funded projects in New York," Energy Policy, Elsevier, vol. 97(C), pages 618-627.
    17. De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
    18. Caresana, F. & Pelagalli, L. & Comodi, G. & Renzi, M., 2014. "Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components’ behavior," Applied Energy, Elsevier, vol. 124(C), pages 17-27.
    19. Rachtan, W. & Malinowski, L., 2013. "An approximate expression for part-load performance of a microturbine combined heat and power system heat recovery unit," Energy, Elsevier, vol. 51(C), pages 146-153.
    20. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:17:y:2017:i:3:d:10.1007_s12351-016-0263-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.