IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v92y2018i2d10.1007_s11069-018-3247-6.html
   My bibliography  Save this article

Relationship of drought frequency and severity with range of annual temperature variation

Author

Listed:
  • Kumar Amrit

    (Indian Institute of Technology Roorkee)

  • Rajendra P. Pandey

    (National Institute of Hydrology)

  • Surendra K. Mishra

    (Indian Institute of Technology Roorkee)

  • Mihail Daradur

    (Research and Project Centre “Eco-Logistica”)

Abstract

The frequency and severity of occurrence of meteorological droughts in different climatic regions depend on regional climatic factors. This study has made an effort to explore the relationship of range of annual temperature variation at a given place with the frequency of occurrence of drought and the maximum magnitude of seasonal rainfall deficit (i.e., severity). The seasonal rainfall refers to sum of monsoon season (rainy season) rainfall in India. The monthly precipitation data of 113 years (1901–2013) for 256 stations in different parts of India have been used to estimate the return period of meteorological drought at different stations. The daily normal values of observed maximum and minimum temperatures from 40 years of records have been utilized to estimate range of temperature variation (θR) during the year at each stations. In various parts of India, the θR ranges from 10 °C in humid regions to 40 °C in arid regions. The various climatic regions have been experiencing maximum deficiency of annual rainfall ranging from 30% (humid) to 90% (arid). The results reveal that places exhibiting θR values between 40 to 30 °C face more frequent droughts with average frequency of once in 3 to once in 6 years. The occurrence of extreme and severe drought events is more frequent in the regions with higher values of θR compare to that in lesser values of θR. The regions with θR values between 30 to 25 °C mostly face severe and moderate events having the average drought return period of 6–9 years, and the occurrence of extreme droughts in these regions is rare. Furthermore, regions with θR

Suggested Citation

  • Kumar Amrit & Rajendra P. Pandey & Surendra K. Mishra & Mihail Daradur, 2018. "Relationship of drought frequency and severity with range of annual temperature variation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1199-1210, June.
  • Handle: RePEc:spr:nathaz:v:92:y:2018:i:2:d:10.1007_s11069-018-3247-6
    DOI: 10.1007/s11069-018-3247-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3247-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3247-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    2. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    3. Zhang, Baoqing & Wu, Pute & Zhao, Xining & Wang, Yubao & Wang, Jiawen & Shi, Yinguang, 2012. "Drought variation trends in different subregions of the Chinese Loess Plateau over the past four decades," Agricultural Water Management, Elsevier, vol. 115(C), pages 167-177.
    4. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christophe Muller & Nouréini Sayouti, 2019. "How Do Agro-Pastoral Policies Affect the Dietary Intake of Agro-Pastoralists? Evidence from Niger," AMSE Working Papers 1917, Aix-Marseille School of Economics, France, revised Apr 2020.
    2. Zhao, Jiongchao & Wang, Chong & Shi, Xiaoyu & Bo, Xiaozhi & Li, Shuo & Shang, Mengfei & Chen, Fu & Chu, Qingquan, 2021. "Modeling climatically suitable areas for soybean and their shifts across China," Agricultural Systems, Elsevier, vol. 192(C).
    3. repec:hal:cdiwps:halshs-02532955 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    2. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    4. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    5. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    6. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    7. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
    9. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    10. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    11. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Parisa Paymard & Mohammad Bannayan & Reza Sadrabadi Haghighi, 2018. "Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1237-1255, April.
    13. Marco Sannolo & Miguel Angel Carretero, 2019. "Dehydration constrains thermoregulation and space use in lizards," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.
    14. Zhiyuan Xiang & Meifang Zhao & U. S. Ogbodo, 2020. "Accumulation of Urban Insect Pests in China: 50 Years’ Observations on Camphor Tree ( Cinnamomum camphora )," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    15. Andrew M. Linke & Frank D. W. Witmer & John O’Loughlin, 2020. "Do people accurately report droughts? Comparison of instrument-measured and national survey data in Kenya," Climatic Change, Springer, vol. 162(3), pages 1143-1160, October.
    16. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    17. Jieming Chou & Tian Xian & Wenjie Dong & Yuan Xu, 2018. "Regional Temporal and Spatial Trends in Drought and Flood Disasters in China and Assessment of Economic Losses in Recent Years," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    18. Oyediran O. Oyebola & Jackson Efitre & Laban Musinguzi & Augustine E. Falaye, 2021. "Potential adaptation strategies for climate change impact among flood-prone fish farmers in climate hotspot Uganda," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12761-12790, September.
    19. Xiuhua Cai & Wenqian Zhang & Cunjie Zhang & Qiang Zhang & Jingli Sun & Chen Cheng & Wenjie Fan & Ying Yu & Xiaoling Liu, 2022. "Identification and Spatial-Temporal Variation Characteristics of Regional Drought Processes in China," Land, MDPI, vol. 11(6), pages 1-21, June.
    20. Hao Guo & Xingming Zhang & Fang Lian & Yuan Gao & Degen Lin & Jing’ai Wang, 2016. "Drought Risk Assessment Based on Vulnerability Surfaces: A Case Study of Maize," Sustainability, MDPI, vol. 8(8), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:92:y:2018:i:2:d:10.1007_s11069-018-3247-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.