IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v90y2018i2d10.1007_s11069-017-3082-1.html
   My bibliography  Save this article

Revised MeTHuVA method for assessment of tsunami human vulnerability of Bakirkoy district, Istanbul

Author

Listed:
  • Duygu Tufekci

    (Middle East Technical University)

  • Mehmet Lutfi Suzen

    (Middle East Technical University)

  • Ahmet Cevdet Yalciner

    (Middle East Technical University)

  • Andrey Zaytsev

    (Russian Academy of Sciences
    Nizhny Novgorod State Technical University)

Abstract

Among the coastal districts of mega city Istanbul, Bakirkoy is one of the most critical one with the importance of air and marine transportation and presence of many other coastal facilities and structures that are prone to suffer from marine hazards. In the history, the Sea of Marmara has experienced numerous earthquake and landslide events and associated tsunamis. Therefore, tsunami risk assessment is essential for all coastal districts of Istanbul, including Bakirkoy district. In this study, a further developed methodology for tsunami human vulnerability and risk assessment Metropolitan Tsunami Human Vulnerability Assessment (MeTHuVA) is applied for Bakirkoy district of Istanbul, considering earthquake generated tsunamis. High-resolution tsunami hazard analysis is performed with the integration of coastal inundation computation with tsunami numerical tool NAMI DANCE and tsunami human vulnerability assessment with GIS-based multi-criteria decision analysis methods (MCDA). Using analytical hierarchy process method of MCDA, a hierarchical structure is established, composed of two main elements of tsunami human vulnerability: Vulnerability at Location and Evacuation Resilience. Tsunami risk assessment for Bakirkoy district is calculated by integrating result of hazard and vulnerability assessments with a risk relation that includes a parameter (n), which represents the preparedness and awareness level of the community. Tsunami simulations revealed that the maximum inundation distance is over 350 m on land and water penetrates almost 1700 m along Ayamama stream. Inundation is observed in eleven neighborhoods of Bakirkoy district. In the inundation zone, maximum flow depth is found to be over 5.7 m. The inundated area forms 4.2% of whole Bakirkoy district, and 62 buildings are located in the inundation zone. Hazard, vulnerability and risk assessment results for different neighborhoods of Bakirkoy district are presented and discussed.

Suggested Citation

  • Duygu Tufekci & Mehmet Lutfi Suzen & Ahmet Cevdet Yalciner & Andrey Zaytsev, 2018. "Revised MeTHuVA method for assessment of tsunami human vulnerability of Bakirkoy district, Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 943-974, January.
  • Handle: RePEc:spr:nathaz:v:90:y:2018:i:2:d:10.1007_s11069-017-3082-1
    DOI: 10.1007/s11069-017-3082-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-3082-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-3082-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joshua Macabuag & Tiziana Rossetto & Ioanna Ioannou & Anawat Suppasri & Daisuke Sugawara & Bruno Adriano & Fumihiko Imamura & Ian Eames & Shunichi Koshimura, 2016. "A proposed methodology for deriving tsunami fragility functions for buildings using optimum intensity measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1257-1285, November.
    2. Dale Dominey-Howes & Paula Dunbar & Jesse Varner & Maria Papathoma-Köhle, 2010. "Estimating probable maximum loss from a Cascadia tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 43-61, April.
    3. R. Omira & M. Baptista & J. Miranda & E. Toto & C. Catita & J. Catalão, 2010. "Tsunami vulnerability assessment of Casablanca-Morocco using numerical modelling and GIS tools," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(1), pages 75-95, July.
    4. Tune Usha & M. Murthy & N. Reddy & Pravakar Mishra, 2012. "Tsunami vulnerability assessment in urban areas using numerical model and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(1), pages 135-147, January.
    5. H. Ismail & A. Abd Wahab & M. Mohd Amin & M. Mohd Yunus & F. Jaffar Sidek & B. Esfandier J., 2012. "A 3-tier tsunami vulnerability assessment technique for the north-west coast of Peninsular Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 549-573, September.
    6. F. Dall’Osso & D. Dominey-Howes & C. Tarbotton & S. Summerhayes & G. Withycombe, 2016. "Revision and improvement of the PTVA-3 model for assessing tsunami building vulnerability using “international expert judgment”: introducing the PTVA-4 model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1229-1256, September.
    7. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dell’Ovo, Marta & Capolongo, Stefano & Oppio, Alessandra, 2018. "Combining spatial analysis with MCDA for the siting of healthcare facilities," Land Use Policy, Elsevier, vol. 76(C), pages 634-644.
    2. Duygu Tufekci-Enginar & M. Lutfi Suzen & Ahmet Cevdet Yalciner, 2021. "The evaluation of public awareness and community preparedness parameter in GIS-based spatial tsunami human vulnerability assessment (MeTHuVA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2639-2658, February.
    3. Cuneyt Yavuz & Elcin Kentel & Mustafa M. Aral, 2020. "Tsunami risk assessment: economic, environmental and social dimensions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1413-1442, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teresa Vera San Martín & Gary Rodriguez Rosado & Patricia Arreaga Vargas & Leonardo Gutierrez, 2018. "Population and building vulnerability assessment by possible worst-case tsunami scenarios in Salinas, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 275-297, August.
    2. Duygu Tufekci-Enginar & M. Lutfi Suzen & Ahmet Cevdet Yalciner, 2021. "The evaluation of public awareness and community preparedness parameter in GIS-based spatial tsunami human vulnerability assessment (MeTHuVA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2639-2658, February.
    3. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    4. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    5. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    6. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    7. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    8. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    9. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    10. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    11. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    12. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    13. Jitendar Kumar Khatri & Bhimaraya Metri, 2016. "SWOT-AHP Approach for Sustainable Manufacturing Strategy Selection: A Case of Indian SME," Global Business Review, International Management Institute, vol. 17(5), pages 1211-1226, October.
    14. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    16. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    17. Om Prakash Mishra & Mahesh Chand & Krishan Kumar & Prashant Mishra, 2023. "Investigating applicability of green supply chain management in manufacturing sectors," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1183-1196, August.
    18. David Han-Min Wang & Quang Linh Huynh, 2013. "Mediating Role of Knowledge Management in Effect of Management Accounting Practices on Firm Performance," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 3(3), pages 1-10, June.
    19. Luis Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Alejandro Alvarado-Iniesta & David Luviano Cruz & Zeshui Xu, 2018. "MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    20. Neha Arora & Naresh Kumar, 2021. "Does Financial Inclusion Promote Human Development? Evidence from India," Jindal Journal of Business Research, , vol. 10(2), pages 163-184, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:90:y:2018:i:2:d:10.1007_s11069-017-3082-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.