IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i1p389-402.html
   My bibliography  Save this article

Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: southeastern part of east Azerbaijan province, Iran)

Author

Listed:
  • Bagher Shirmohammadi
  • Hamidreza Moradi
  • Vahid Moosavi
  • Majid Semiromi
  • Ali Zeinali

Abstract

Drought is accounted as one of the most natural hazards. Studying on drought is important for designing and managing of water resources systems. This research is carried out to evaluate the ability of Wavelet-ANN and adaptive neuro-fuzzy inference system (ANFIS) techniques for meteorological drought forecasting in southeastern part of East Azerbaijan province, Iran. The Wavelet-ANN and ANFIS models were first trained using the observed data recorded from 1952 to 1992 and then used to predict meteorological drought over the test period extending from 1992 to 2011. The performances of the different models were evaluated by comparing the corresponding values of root mean squared error coefficient of determination (R 2 ) and Nash–Sutcliffe model efficiency coefficient. In this study, more than 1,000 model structures including artificial neural network (ANN), adaptive neural-fuzzy inference system (ANFIS) and Wavelet-ANN models were tested in order to assess their ability to forecast the meteorological drought for one, two, and three time steps (6 months) ahead. It was demonstrated that wavelet transform can improve meteorological drought modeling. It was also shown that ANFIS models provided more accurate predictions than ANN models. This study confirmed that the optimum number of neurons in the hidden layer could not be always determined using specific formulas; hence, it should be determined using a trial-and-error method. Also, decomposition level in wavelet transform should be delineated according to the periodicity and seasonality of data series. The order of models with regard to their accuracy is as following: Wavelet-ANFIS, Wavelet-ANN, ANFIS, and ANN, respectively. To the best of our knowledge, no research has been published that explores coupling wavelet analysis with ANFIS for meteorological drought and no research has tested the efficiency of these models to forecast the meteorological drought in different time scales as of yet. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Bagher Shirmohammadi & Hamidreza Moradi & Vahid Moosavi & Majid Semiromi & Ali Zeinali, 2013. "Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: southeastern part of east Azerbaijan province, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 389-402, October.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:389-402
    DOI: 10.1007/s11069-013-0716-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0716-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0716-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Firat, Mahmut & Güngör, Mahmud, 2007. "River flow estimation using adaptive neuro fuzzy inference system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 75(3), pages 87-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahram Kaboodvandpour & Jamil Amanollahi & Samira Qhavami & Bakhtiyar Mohammadi, 2015. "Assessing the accuracy of multiple regressions, ANFIS, and ANN models in predicting dust storm occurrences in Sanandaj, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 879-893, September.
    2. Anshuka Anshuka & Floris F. van Ogtrop & R. Willem Vervoort, 2019. "Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 955-977, June.
    3. Vahid Moosavi & Ali Talebi & Mohammad Reza Hadian, 2017. "Development of a Hybrid Wavelet Packet- Group Method of Data Handling (WPGMDH) Model for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 43-59, January.
    4. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Mohamed Abd Elaziz, 2020. "Optimized Forecasting Method for Weekly Influenza Confirmed Cases," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
    5. Yaroslav Vyklyuk & Milan Radovanović & Boško Milovanović & Taras Leko & Milan Milenković & Zoran Milošević & Ana Milanović Pešić & Dejana Jakovljević, 2017. "Hurricane genesis modelling based on the relationship between solar activity and hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1043-1062, January.
    6. Anurag Malik & Anil Kumar & Rajesh P. Singh, 2019. "Application of Heuristic Approaches for Prediction of Hydrological Drought Using Multi-scalar Streamflow Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3985-4006, September.
    7. Iman Khosravi & Yaser Jouybari-Moghaddam & Mohammad Reza Sarajian, 2017. "The comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological and remotely sensed drought indices over the eastern district of Isfahan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1507-1522, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    2. Kisi, Özgür, 2008. "Constructing neural network sediment estimation models using a data-driven algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 94-103.
    3. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    4. Benya Suntaranont & Somrawee Aramkul & Manop Kaewmoracharoen & Paskorn Champrasert, 2020. "Water Irrigation Decision Support System for Practical Weir Adjustment Using Artificial Intelligence and Machine Learning Techniques," Sustainability, MDPI, vol. 12(5), pages 1-18, February.
    5. Hadi Sanikhani & Ozgur Kisi, 2012. "River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1715-1729, April.
    6. Sinan Jasim Hadi & Mustafa Tombul, 2018. "Forecasting Daily Streamflow for Basins with Different Physical Characteristics through Data-Driven Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3405-3422, August.
    7. Renata Graf & Viktor Vyshnevskyi, 2022. "Forecasting Monthly River Flows in Ukraine under Different Climatic Conditions," Resources, MDPI, vol. 11(12), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:389-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.