IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i3d10.1007_s11069-017-2827-1.html
   My bibliography  Save this article

The comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological and remotely sensed drought indices over the eastern district of Isfahan, Iran

Author

Listed:
  • Iman Khosravi

    (University of Tehran)

  • Yaser Jouybari-Moghaddam

    (University of Tehran)

  • Mohammad Reza Sarajian

    (University of Tehran)

Abstract

This paper aims to employ and compare four methods of neural network (NN), support vector regression (SVR), least squares support vector regression (LSSVR) and adaptive neuro-fuzzy inference system (ANFIS) for modeling the time series behavior of the meteorological and the remotely sensed (RS) drought indices of the eastern district of Isfahan during 2000–2014. The data used in the paper are the normalized difference vegetation index (NDVI) and the land surface temperature time series of MODIS satellite and the rainfall time series of TRMM satellite. Then, three RS drought indices namely vegetation condition index, NDVI deviation index and temperature vegetation index and three meteorological drought indices namely 3-month SPI, 6-month SPI and 12-month SPI are generated by the data. Afterward, based on the correlation coefficient between the RS and the meteorological drought indices, three indices are chosen as candidate indices for monitoring the drought severity of the study area. After modeling the time series behavior of these indices by the aforementioned methods, the results indicate that the SVR has the highest and the NN has the lowest efficiency among all the methods. In addition, the performance speed of the LSSVR and then the ANFIS is the highest. At the end of the paper, a fuzzy inference system (FIS) is presented based on the candidate indices to monitor the drought severity at spring and summer of 2000–2014. According to the results of the designed FIS, the spring status is normal in all years except 2000 and 2011 (moderate drought) and the summer status is severe drought in all years except 2000, 2010, 2011 and 2014 (moderate drought).

Suggested Citation

  • Iman Khosravi & Yaser Jouybari-Moghaddam & Mohammad Reza Sarajian, 2017. "The comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological and remotely sensed drought indices over the eastern district of Isfahan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1507-1522, July.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:3:d:10.1007_s11069-017-2827-1
    DOI: 10.1007/s11069-017-2827-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2827-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2827-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Patel & Kamana Yadav, 2015. "Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 663-677, June.
    2. Bagher Shirmohammadi & Hamidreza Moradi & Vahid Moosavi & Majid Semiromi & Ali Zeinali, 2013. "Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: southeastern part of east Azerbaijan province, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 389-402, October.
    3. Sanjay Jain & Ravish Keshri & Ajanta Goswami & Archana Sarkar, 2010. "Application of meteorological and vegetation indices for evaluation of drought impact: a case study for Rajasthan, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 643-656, September.
    4. Xingyu Zhang & Tao Zhang & Alistair A Young & Xiaosong Li, 2014. "Applications and Comparisons of Four Time Series Models in Epidemiological Surveillance Data," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sedigheh Mohamadi & Saad Sh. Sammen & Fatemeh Panahi & Mohammad Ehteram & Ozgur Kisi & Amir Mosavi & Ali Najah Ahmed & Ahmed El-Shafie & Nadhir Al-Ansari, 2020. "Zoning map for drought prediction using integrated machine learning models with a nomadic people optimization algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 537-579, October.
    2. Omidreza Mikaili & Majid Rahimzadegan, 2022. "Investigating remote sensing indices to monitor drought impacts on a local scale (case study: Fars province, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2511-2529, April.
    3. Alireza Taheri Dehkordi & Mohammad Javad Valadan Zoej & Hani Ghasemi & Ebrahim Ghaderpour & Quazi K. Hassan, 2022. "A New Clustering Method to Generate Training Samples for Supervised Monitoring of Long-Term Water Surface Dynamics Using Landsat Data through Google Earth Engine," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    4. Fatemeh Barzegari Banadkooki & Vijay P. Singh & Mohammad Ehteram, 2021. "Multi-timescale drought prediction using new hybrid artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2461-2478, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omvir Singh & Divya Saini & Pankaj Bhardwaj, 2021. "Characterization of meteorological drought over a dryland ecosystem in north western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 785-826, October.
    2. V. K. Prajapati & M. Khanna & M. Singh & R. Kaur & R. N. Sahoo & D. K. Singh, 2021. "Evaluation of time scale of meteorological, hydrological and agricultural drought indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 89-109, October.
    3. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    4. Francisco José Del-Toro-Guerrero & Luis Walter Daesslé & Rodrigo Méndez-Alonzo & Thomas Kretzschmar, 2022. "Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico," Land, MDPI, vol. 11(6), pages 1-19, May.
    5. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    6. Manojit Chattopadhyay & Subrata Kumar Mitra, 2018. "Assessing the predictability of different kinds of models in estimating impacts of climatic factors on food grain availability in India," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 50-64, March.
    7. Hongbo Zhang & Nan Li & Wengang Zhang & Xiaofang Pei, 2016. "Experiments to automatically monitor drought variation using simulated annealing algorithm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 175-184, October.
    8. Sallahuddin Hassan & Zalila Othman, 2018. "Forecasting on the long-term sustainability of the employees provident fund in Malaysia via the Box-Jenkins’ ARIMA model," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(1), pages 43-53, January.
    9. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Mohamed Abd Elaziz, 2020. "Optimized Forecasting Method for Weekly Influenza Confirmed Cases," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
    10. Varsha Pandey & Prashant K Srivastava & Sudhir K Singh & George P. Petropoulos & Rajesh Kumar Mall, 2021. "Drought Identification and Trend Analysis Using Long-Term CHIRPS Satellite Precipitation Product in Bundelkhand, India," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    11. Lu Liu & Yang Hong & Christopher Bednarczyk & Bin Yong & Mark Shafer & Rachel Riley & James Hocker, 2012. "Hydro-Climatological Drought Analyses and Projections Using Meteorological and Hydrological Drought Indices: A Case Study in Blue River Basin, Oklahoma," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2761-2779, August.
    12. Anurag Malik & Anil Kumar & Rajesh P. Singh, 2019. "Application of Heuristic Approaches for Prediction of Hydrological Drought Using Multi-scalar Streamflow Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3985-4006, September.
    13. Yaroslav Vyklyuk & Milan Radovanović & Boško Milovanović & Taras Leko & Milan Milenković & Zoran Milošević & Ana Milanović Pešić & Dejana Jakovljević, 2017. "Hurricane genesis modelling based on the relationship between solar activity and hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1043-1062, January.
    14. Vahid Moosavi & Ali Talebi & Mohammad Reza Hadian, 2017. "Development of a Hybrid Wavelet Packet- Group Method of Data Handling (WPGMDH) Model for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 43-59, January.
    15. Asmita Mahajan & Nonita Sharma & Silvia Aparicio-Obregon & Hashem Alyami & Abdullah Alharbi & Divya Anand & Manish Sharma & Nitin Goyal, 2022. "A Novel Stacking-Based Deterministic Ensemble Model for Infectious Disease Prediction," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    16. Mehmet Dikici, 2022. "Drought Analysis for the Seyhan Basin with Vegetation Indices and Comparison with Meteorological Different Indices," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    17. Anshuka Anshuka & Floris F. van Ogtrop & R. Willem Vervoort, 2019. "Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 955-977, June.
    18. Sinan Keskin & Fatih Külahcı, 2023. "ARIMA model simulation for total electron content, earthquake and radon relationship identification," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1955-1976, February.
    19. Watinee Thavorntam & Netnapid Tantemsapya & Leisa Armstrong, 2015. "A combination of meteorological and satellite-based drought indices in a better drought assessment and forecasting in Northeast Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1453-1474, July.
    20. Abhishek Danodia & Anuradha Kushwaha & N. R. Patel, 2021. "Remote sensing-derived combined index for agricultural drought assessment of rabi pulse crops in Bundelkhand region, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15432-15449, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:3:d:10.1007_s11069-017-2827-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.