IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v31y2004i1p111-128.html
   My bibliography  Save this article

Floods in the IPCC TAR Perspective

Author

Listed:
  • Z. Kundzewicz
  • H.-J. Schellnhuber

Abstract

Recent floods have become more abundant and more destructive than ever in many regions of the globe. Destructive floods observed in the 1990s all over the world have led to record-high material damage, with total losses exceeding one billion US dollars in each of two dozen events. The immediate question emerges as to the extent to which a sensible rise in flood hazard and vulnerability can be linked to climate variability and change. Links between climate change and floods have found extensive coverage in the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC). Since the material on floods is scattered over many places of two large volumes of the TAR, the present contribution - a guided tour to floods in the IPCC TAR – may help a reader notice the different angles from which floods were considered in the IPCC report. As the water-holding capacity of the atmosphere grows with temperature, the potential for intensive precipitation also increases. Higher and more intense precipitation has been already observed and this trend is expected to increase in the future, warmer world. This is a sufficient condition for flood hazard to increase. Yet there are also other, non-climatic, factors exacerbating flood hazard. According to the IPCC TAR, the analysis of extreme events in both observations and coupled models is underdeveloped. It is interesting that the perception of floods in different parts of the TAR is largely different. Large uncertainty is emphasized in the parts dealing with the science of climate change, but in the impact chapters, referring to sectors and regions, growth in flood risk is taken for granted. Floods have been identified on short lists of key regional concerns. Copyright Kluwer Academic Publishers 2004

Suggested Citation

  • Z. Kundzewicz & H.-J. Schellnhuber, 2004. "Floods in the IPCC TAR Perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(1), pages 111-128, January.
  • Handle: RePEc:spr:nathaz:v:31:y:2004:i:1:p:111-128
    DOI: 10.1023/B:NHAZ.0000020257.09228.7b
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/B:NHAZ.0000020257.09228.7b
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/B:NHAZ.0000020257.09228.7b?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrade, R.F.S. & Schellnhuber, H.J. & Claussen, M., 1998. "Analysis of rainfall records: possible relation to self-organized criticality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 254(3), pages 557-568.
    2. Reiner Schnur, 2002. "The investment forecast," Nature, Nature, vol. 415(6871), pages 483-484, January.
    3. P. C. D. Milly & R. T. Wetherald & K. A. Dunne & T. L. Delworth, 2002. "Increasing risk of great floods in a changing climate," Nature, Nature, vol. 415(6871), pages 514-517, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Barredo, 2007. "Major flood disasters in Europe: 1950–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 125-148, July.
    2. O. Ionuş & M. Licurici & M. Pătroescu & S. Boengiu, 2015. "Assessment of flood-prone stripes within the Danube drainage area in the South-West Oltenia Development Region, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 69-88, February.
    3. Zhangqi Zhong & Yiqin Hu & Lei Jiang, 2019. "Impact of Climate Change on Agricultural Total Factor Productivity Based on Spatial Panel Data Model: Evidence from China," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    4. Octavio Rojas & María Mardones & Carolina Rojas & Carolina Martínez & Luis Flores, 2017. "Urban Growth and Flood Disasters in the Coastal River Basin of South-Central Chile (1943–2011)," Sustainability, MDPI, vol. 9(2), pages 1-21, January.
    5. Zbigniew Kundzewicz & Yukiko Hirabayashi & Shinjiro Kanae, 2010. "River Floods in the Changing Climate—Observations and Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2633-2646, September.
    6. Andrzej Wuczyński & Zbigniew Jakubiec, 2013. "Mortality of game mammals caused by an extreme flooding event in south-western Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 85-97, October.
    7. Fred Hattermann & Mathias Weiland & Shaochun Huang & Valentina Krysanova & Zbigniew Kundzewicz, 2011. "Model-Supported Impact Assessment for the Water Sector in Central Germany Under Climate Change—A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3113-3134, October.
    8. Octavio Rojas & María Mardones & Carolina Martínez & Luis Flores & Katia Sáez & Alberto Araneda, 2018. "Flooding in Central Chile: Implications of Tides and Sea Level Increase in the 21st Century," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    9. Amin Owrangi & Robert Lannigan & Slobodan Simonovic, 2015. "Mapping climate change-caused health risk for integrated city resilience modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 67-88, May.
    10. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    11. Rojas, Carolina & Munizaga, Juan & Rojas, Octavio & Martínez, Carolina & Pino, Joan, 2019. "Urban development versus wetland loss in a coastal Latin American city: Lessons for sustainable land use planning," Land Use Policy, Elsevier, vol. 80(C), pages 47-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    2. Alvarez-Ramirez, Jose & Espinosa-Paredes, Gilberto & Vazquez, Alejandro, 2005. "Detrended fluctuation analysis of the neutronic power from a nuclear reactor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(2), pages 227-240.
    3. Berlemann, Michael, 2015. "Hurricane Risk, Happiness and Life Satisfaction. Some Empirical Evidence on the Indirect Effects of Natural Disasters," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113073, Verein für Socialpolitik / German Economic Association.
    4. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    5. Teodor Kitczak & Heidi Jänicke & Marek Bury & Ryszard Malinowski, 2021. "The Usefulness of Mixtures with Festulolium braunii for the Regeneration of Grassland under Progressive Climate Change," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    6. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    7. Michael Bernardi & Christa Hainz & Paulina Maier & Maria Waldinger, 2023. "A “Green Revolution” for Sub-Saharan Africa? Challenges and Opportunities," EconPol Policy Brief 54, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    8. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    9. Pratyush Tripathy & Teja Malladi, 2022. "Global Flood Mapper: a novel Google Earth Engine application for rapid flood mapping using Sentinel-1 SAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1341-1363, November.
    10. Sechindra Vallury & Bryan Leonard, 2022. "Canals, climate, and corruption: The provisioning of public infrastructure under uncertainty," Economics and Politics, Wiley Blackwell, vol. 34(1), pages 221-252, March.
    11. repec:fpr:2020cp:5(5 is not listed on IDEAS
    12. Jan Skála & Radim Vácha & Pavel Čupr, 2018. "Which Compounds Contribute Most to Elevated Soil Pollution and the Corresponding Health Risks in Floodplains in the Headwater Areas of the Central European Watershed?," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    13. David Ocio & Christian Stocker & Ángel Eraso & Arantza Martínez & José María Sanz Galdeano, 2016. "Towards a reliable and cost-efficient flood risk management: the case of the Basque Country (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 617-639, March.
    14. Yun Xing & Huili Chen & Qiuhua Liang & Xieyao Ma, 2022. "Improving the performance of city-scale hydrodynamic flood modelling through a GIS-based DEM correction method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2313-2335, July.
    15. David Marcolino Nielsen & Marcio Cataldi & André Luiz Belém & Ana Luiza Spadano Albuquerque, 2016. "Local indices for the South American monsoon system and its impacts on Southeast Brazilian precipitation patterns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 909-928, September.
    16. Niu, Hongli & Wang, Weiqing & Zhang, Junhuan, 2019. "Recurrence duration statistics and time-dependent intrinsic correlation analysis of trading volumes: A study of Chinese stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 838-854.
    17. Andrew C. Ross & Raymond G. Najjar, 2019. "Evaluation of methods for selecting climate models to simulate future hydrological change," Climatic Change, Springer, vol. 157(3), pages 407-428, December.
    18. Berlemann, Michael & Vogt, Gerit, 2007. "Kurzfristige Wachstumseffekte von Naturkatastrophen," Working Paper 69/2007, Helmut Schmidt University, Hamburg.
    19. Dandan Zhang & Juqin Shen & Pengfei Liu & Fuhua Sun, 2020. "Allocation of Flood Drainage Rights Based on the PSR Model and Pythagoras Fuzzy TOPSIS Method," IJERPH, MDPI, vol. 17(16), pages 1-19, August.
    20. Jian Fang & Feng Kong & Jiayi Fang & Lin Zhao, 2018. "Observed changes in hydrological extremes and flood disaster in Yangtze River Basin: spatial–temporal variability and climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 89-107, August.
    21. Grames, Johanna & Prskawetz, Alexia & Grass, Dieter & Viglione, Alberto & Blöschl, Günter, 2016. "Modeling the interaction between flooding events and economic growth," Ecological Economics, Elsevier, vol. 129(C), pages 193-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:31:y:2004:i:1:p:111-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.