IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i5d10.1007_s11069-024-07038-6.html
   My bibliography  Save this article

Influence of wave setup and tide-surge interaction on storm surges in the Bay of Bengal

Author

Listed:
  • V. Adithyan

    (CSIR-National Institute of Oceanography
    Academy of Scientific and Innovative Research (AcSIR))

  • S. Neetu

    (CSIR-National Institute of Oceanography
    Academy of Scientific and Innovative Research (AcSIR))

  • Imsangla Imchen

    (CSIR-National Institute of Oceanography
    Academy of Scientific and Innovative Research (AcSIR))

  • P. M. Sohan

    (CSIR-National Institute of Oceanography
    Academy of Scientific and Innovative Research (AcSIR))

Abstract

This study employs a coupled wave-hydrodynamic model to simulate storm surges and waves from 15 tropical cyclones (TCs) along the east coast of India and the head Bay of Bengal (BoB) from 2010 to 2020, selected based on available tide-gauge data. By maintaining uniform model settings—such as domain, mesh, bathymetry, and atmospheric forcing—across all simulations, we offer a consistent framework for evaluating tide-surge-wave interactions, contrasting with previous studies that focused on individual TCs with varied model settings. Our findings reveal that wave setup can play a significant role, contributing up to 86% to the tide-removed water level amplitude for intense TCs. This contribution varies according to TC intensity, tidal phase, bathymetry, and the location of maximum winds. Tide-surge interaction proves crucial, accounting for up to 31% of the contribution, only for TCs making landfall in the head BoB region having shallow bathymetry and curved pockets of the BoB coastline featuring shallow regions. This work enhances our understanding of the complex storm surge dynamics, providing a more comprehensive knowledge for future studies and mitigation strategies in vulnerable coastal regions of the BoB.

Suggested Citation

  • V. Adithyan & S. Neetu & Imsangla Imchen & P. M. Sohan, 2025. "Influence of wave setup and tide-surge interaction on storm surges in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 6043-6068, March.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-07038-6
    DOI: 10.1007/s11069-024-07038-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-07038-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-07038-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borja G. Reguero & Iñigo J. Losada & Fernando J. Méndez, 2019. "A recent increase in global wave power as a consequence of oceanic warming," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    2. A. D. Rao & Puja Upadhaya & Hyder Ali & Smita Pandey & Vidya Warrier, 2020. "Coastal inundation due to tropical cyclones along the east coast of India: an influence of climate change impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(1), pages 39-57, March.
    3. V. Rao & B. Subramanian & R. Mohan & R. Kannan & T. Mageswaran & T. Arumugam & B. Rajan, 2013. "Storm surge vulnerability along Chennai–Cuddalore coast due to a severe cyclone THANE," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 453-465, September.
    4. Khandker Tasnim & Tomoya Shibayama & Miguel Esteban & Hiroshi Takagi & Koichiro Ohira & Ryota Nakamura, 2015. "Field observation and numerical simulation of past and future storm surges in the Bay of Bengal: case study of cyclone Nargis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1619-1647, January.
    5. Mohammad Asad Hussain & Yoshimitsu Tajima, 2017. "Numerical investigation of surge–tide interactions in the Bay of Bengal along the Bangladesh coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 669-694, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thit Oo Kyaw & Miguel Esteban & Martin Mäll & Tomoya Shibayama, 2021. "Correction to: Extreme waves induced by cyclone Nargis at Myanmar coast: numerical modeling versus satellite observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1819-1819, April.
    2. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    3. Pritam Ghosh & Asraful Alam & Nilanjana Ghosal & Debodatta Saha, 2021. "A Geospatial Analysis of Temporary Housing Inequality among Socially Marginalized and Privileged Groups in India," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 798-819, June.
    4. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    5. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    6. Thit Oo Kyaw & Miguel Esteban & Martin Mäll & Tomoya Shibayama, 2021. "Correction to: Extreme waves induced by cyclone Nargis at Myanmar coast: numerical modeling versus satellite observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1819-1819, April.
    7. Ryota Nakamura & Martin Mäll & Tomoya Shibayama, 2019. "Street-scale storm surge load impact assessment using fine-resolution numerical modelling: a case study from Nemuro, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 391-422, October.
    8. Liu, Jin & Li, Rui & Li, Shuo & Meucci, Alberto & Young, Ian R., 2024. "Increasing wave power due to global climate change and intensification of Antarctic Oscillation," Applied Energy, Elsevier, vol. 358(C).
    9. Wan, Chang & Yang, Can & He, Ming & Baldock, Tom E. & Nielsen, Peter & Johanning, Lars, 2025. "Hydrodynamic and power conversion performance of a hybrid raft-type WEC and breakwater system using SPH method," Renewable Energy, Elsevier, vol. 245(C).
    10. Sumit Panja & Sayani Mukhopadhyay, 2024. "An investigation of small and marginal holder farmers’ adaptation strategies to climate variability and its determinants in coastal agriculture: evidence from east coast of India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(3), pages 1-33, March.
    11. Liu, Jin & Meucci, Alberto & Liu, Qingxiang & Babanin, Alexander V. & Ierodiaconou, Daniel & Xu, Xingkun & Young, Ian R., 2023. "A high-resolution wave energy assessment of south-east Australia based on a 40-year hindcast," Renewable Energy, Elsevier, vol. 215(C).
    12. Fei Liu & Jun Sasaki & Jundong Chen & Yulong Wang, 2022. "Numerical assessment of coastal multihazard vulnerability in Tokyo Bay," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3597-3625, December.
    13. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Ulazia, Alain & Esnaola, Ganix & Serras, Paula & Penalba, Markel, 2020. "On the impact of long-term wave trends on the geometry optimisation of oscillating water column wave energy converters," Energy, Elsevier, vol. 206(C).
    15. Lira-Loarca, Andrea & Ferrari, Francesco & Mazzino, Andrea & Besio, Giovanni, 2021. "Future wind and wave energy resources and exploitability in the Mediterranean Sea by 2100," Applied Energy, Elsevier, vol. 302(C).
    16. Sayaka Hoshino & Miguel Esteban & Takahito Mikami & Hiroshi Takagi & Tomoya Shibayama, 2016. "Estimation of increase in storm surge damage due to climate change and sea level rise in the Greater Tokyo area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 539-565, January.
    17. Zhaoqing Yang & Sourav Taraphdar & Taiping Wang & L. Ruby Leung & Molly Grear, 2016. "Uncertainty and feasibility of dynamical downscaling for modeling tropical cyclones for storm surge simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1161-1184, November.
    18. Ahn, Seongho & Neary, Vincent S. & Ha, Taemin, 2023. "A practical method for modeling temporally-averaged ocean wave frequency-directional spectra for characterizing wave energy climates," Renewable Energy, Elsevier, vol. 207(C), pages 499-511.
    19. Maqsood Mansur & Julia Hopkins & Qin Chen, 2023. "Estuarine response to storm surge and sea-level rise associated with channel deepening: a flood vulnerability assessment of southwest Louisiana, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3879-3897, April.
    20. Martinez, A. & Iglesias, G., 2020. "Wave exploitability index and wave resource classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-07038-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.