IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i4d10.1007_s11069-024-06969-4.html
   My bibliography  Save this article

Why structural solutions for flood control should be adapted to climate change?

Author

Listed:
  • Mahdi Hosseinipoor

    (Sharif University of Technology)

  • Armin Mollaei Rudsary

    (Sharif University of Technology)

  • Mohammad Danesh-Yazdi

    (Sharif University of Technology)

  • Zahra Kazempour

    (Sharif University of Technology)

  • Yasna Yeganeh

    (Sharif University of Technology)

Abstract

Anthropogenic activities in intensively managed landscapes have altered mechanisms of runoff generation and flood regimes. Despite utilizing hydraulic structures for decades to control floods, their expected performance under the varied frequency or intensity of extreme precipitations due to climate change may be less certain. This study aimed to examine this hypothesis by employing both remote sensing and field data in the Imamzadeh Davood watershed in Central Northern Iran, which experienced a devastating flash flood in July 2022. To this end, we collected data on river morphology, the structural characteristics of 18 check dams, and sedimentation patterns by surveying the main river path. We also processed satellite imagery to track long-term land-use and land-cover change. Finally, we explored the distinct role of extreme precipitation in intensifying the occurred flood incident using recorded data from synoptic stations. Our findings revealed an unprecedented > 100-year return period precipitation event in the catchment, with devastating consequences that underscore the escalating impact of heavy rainfall due to climate change in many regions. In-situ observations revealed that all 18 check dams were destroyed between 17 and 100% during the flood event, while upstream check dams showed a higher degree of destruction. The external stability analysis demonstrated that under static forces, 100% and 62% of the check dams were potentially resistant against sliding and overturning, respectively. However, given the observed destruction of all check dams and high deposition depth of sediment in the river corridor, our further analysis by considering dynamic forces and rock impact indicated that the shock imposed by the unprecedented debris flow was responsible for the cascade failure of check dams from upstream to downstream. These findings highlight the need to revisit the design principles of hydraulic structures under the impact of climate change to increase the resiliency of flood control systems.

Suggested Citation

  • Mahdi Hosseinipoor & Armin Mollaei Rudsary & Mohammad Danesh-Yazdi & Zahra Kazempour & Yasna Yeganeh, 2025. "Why structural solutions for flood control should be adapted to climate change?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4657-4682, March.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:4:d:10.1007_s11069-024-06969-4
    DOI: 10.1007/s11069-024-06969-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06969-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06969-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iman Mallakpour & Gabriele Villarini, 2015. "The changing nature of flooding across the central United States," Nature Climate Change, Nature, vol. 5(3), pages 250-254, March.
    2. Sugianto Sugianto & Anwar Deli & Edy Miswar & Muhammad Rusdi & Muhammad Irham, 2022. "The Effect of Land Use and Land Cover Changes on Flood Occurrence in Teunom Watershed, Aceh Jaya," Land, MDPI, vol. 11(8), pages 1-18, August.
    3. Lei Gu & Jiabo Yin & Pierre Gentine & Hui-Min Wang & Louise J. Slater & Sylvia C. Sullivan & Jie Chen & Jakob Zscheischler & Shenglian Guo, 2023. "Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Myles R. Allen & William J. Ingram, 2002. "Constraints on future changes in climate and the hydrologic cycle," Nature, Nature, vol. 419(6903), pages 224-232, September.
    5. Axel Bronstert, 2003. "Floods and Climate Change: Interactions and Impacts," Risk Analysis, John Wiley & Sons, vol. 23(3), pages 545-557, June.
    6. S. Jonkman, 2005. "Global Perspectives on Loss of Human Life Caused by Floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 34(2), pages 151-175, February.
    7. Eriksen, Siri & Schipper, E. Lisa F. & Scoville-Simonds, Morgan & Vincent, Katharine & Adam, Hans Nicolai & Brooks, Nick & Harding, Brian & Khatri, Dil & Lenaerts, Lutgart & Liverman, Diana & Mills-No, 2021. "Adaptation interventions and their effect on vulnerability in developing countries: Help, hindrance or irrelevance?," World Development, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarosh Alam Ghausi & Erwin Zehe & Subimal Ghosh & Yinglin Tian & Axel Kleidon, 2024. "Thermodynamically inconsistent extreme precipitation sensitivities across continents driven by cloud-radiative effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Rebecca E. Morss & Julie L. Demuth & Ann Bostrom & Jeffrey K. Lazo & Heather Lazrus, 2015. "Flash Flood Risks and Warning Decisions: A Mental Models Study of Forecasters, Public Officials, and Media Broadcasters in Boulder, Colorado," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2009-2028, November.
    3. Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
    4. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    5. Sivadasan, Jagadeesh & Xu, Wenjian, 2021. "Missing women in India: Gender-specific effects of early-life rainfall shocks," World Development, Elsevier, vol. 148(C).
    6. María Isabel Arango & Edier Aristizábal & Federico Gómez, 2021. "Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 983-1012, January.
    7. Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
    8. Kehan Miao & Yong Huang & Zhi Dou & Huan Shen & Yan Zhu & Yue Su & Yin Jiang & Chaoqi Wang, 2024. "Investigating the Impacts of Seasonal Temperature Variations on the Hysteresis Response of Groundwater in the Aquitard in a Plain Reservoir area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3389-3412, July.
    9. Timothy Ivancic & Stephen Shaw, 2015. "Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge," Climatic Change, Springer, vol. 133(4), pages 681-693, December.
    10. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.
    11. Bing-Chen Jhong & Ching-Pin Tung, 2018. "Evaluating Future Joint Probability of Precipitation Extremes with a Copula-Based Assessing Approach in Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4253-4274, October.
    12. Francesco Serinaldi & Florian Loecker & Chris G. Kilsby & Hubert Bast, 2018. "Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 71-92, October.
    13. Megan Ceronsky & David Anthoff & Cameron Hepburn & Richard S.J. Tol, 2005. "Checking The Price Tag On Catastrophe: The Social Cost Of Carbon Under Non-Linear Climate Response," Working Papers FNU-87, Research unit Sustainability and Global Change, Hamburg University, revised Aug 2005.
    14. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    16. Natalie Teale & David A. Robinson, 2022. "Long-term variability in atmospheric moisture transport and relationship with heavy precipitation in the eastern USA," Climatic Change, Springer, vol. 175(1), pages 1-23, November.
    17. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    18. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    19. Perez-Maqueo, O. & Intralawan, A. & Martinez, M.L., 2007. "Coastal disasters from the perspective of ecological economics," Ecological Economics, Elsevier, vol. 63(2-3), pages 273-284, August.
    20. S. Mosquera-Machado & Sajjad Ahmad, 2007. "Flood hazard assessment of Atrato River in Colombia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 591-609, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:4:d:10.1007_s11069-024-06969-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.