IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1271-d882680.html
   My bibliography  Save this article

The Effect of Land Use and Land Cover Changes on Flood Occurrence in Teunom Watershed, Aceh Jaya

Author

Listed:
  • Sugianto Sugianto

    (Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
    Remote Sensing and Cartography Lab, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia)

  • Anwar Deli

    (Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
    Center for Environmental and Natural Resources Research (PPLH-SDA), Universitas Syiah Kuala, Banda Aceh 23111, Indonesia)

  • Edy Miswar

    (Center for Environmental and Natural Resources Research (PPLH-SDA), Universitas Syiah Kuala, Banda Aceh 23111, Indonesia)

  • Muhammad Rusdi

    (Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
    Remote Sensing and Cartography Lab, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
    Center for Environmental and Natural Resources Research (PPLH-SDA), Universitas Syiah Kuala, Banda Aceh 23111, Indonesia)

  • Muhammad Irham

    (Center for Environmental and Natural Resources Research (PPLH-SDA), Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
    Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
    Geographic Information System Laboratory of the Faculty of Maritime and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia)

Abstract

The change in land use and land cover in upstream watersheds will change the features of drainage systems such that they will impact surface overflow and affect the infiltration capacity of a land surface, which is one of the factors that contributes to flooding. The key objective of this study is to identify vulnerable areas of flooding and to assess the causes of flooding using ground-based measurement, remote sensing data, and GIS-based flood risk mapping approaches for the flood hazard mapping of the Teunom watershed. The purposes of this investigation were to: (1) examine the level and characteristics of land use and land cover changes that occurred in the area between 2009 and 2019; (2) determine the impact of land use and land cover changes on the water overflow and infiltration capacity; and (3) produce flood risk maps for the Teunom sub-district. Landsat imagery of 2009, 2013, and 2019; slope maps; and field measurement soil characteristics data were utilized for this study. The results show a significant increase in the use of residential land, open land, rice fields, and wetlands (water bodies) and different infiltration rates that contribute to the variation of flood zone hazards. The Teunom watershed has a high and very high risk of ~11.98% of the total area, a moderate risk of 56.24%, and a low and very low risk of ~31.79%. The Teunom watershed generally has a high flood risk, with a total of ~68% of the area (moderate to very high risk). There was a substantial reduction in forest land, agricultural land, and shrubs from 2009 to 2019. Therefore, the segmentation of flood-risk zones is essential for preparation in the region. The study offers basic information about flood hazard areas for central governments, local governments, NGOs, and communities to intervene in preparedness, responses, and flood mitigation and recovery processes, respectively.

Suggested Citation

  • Sugianto Sugianto & Anwar Deli & Edy Miswar & Muhammad Rusdi & Muhammad Irham, 2022. "The Effect of Land Use and Land Cover Changes on Flood Occurrence in Teunom Watershed, Aceh Jaya," Land, MDPI, vol. 11(8), pages 1-18, August.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1271-:d:882680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen Liping & Sun Yujun & Sajjad Saeed, 2018. "Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    2. Ike Sari Astuti & Kamalakanta Sahoo & Adam Milewski & Deepak R. Mishra, 2019. "Impact of Land Use Land Cover (LULC) Change on Surface Runoff in an Increasingly Urbanized Tropical Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4087-4103, September.
    3. Jorge Flávio Casé Braga da Costa Silva & Richarde Marques Silva & Celso Augusto Guimarães Santos & Alexandro Medeiros Silva & Pedro Costa Guedes Vianna, 2021. "Analysis of the response of the Epitácio Pessoa reservoir (Brazilian semiarid region) to potential future drought, water transfer and LULC scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1347-1371, August.
    4. Nangware Kajia Msofe & Lianxi Sheng & James Lyimo, 2019. "Land Use Change Trends and Their Driving Forces in the Kilombero Valley Floodplain, Southeastern Tanzania," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    5. Sabita Shrestha & Shenghui Cui & Lilai Xu & Lihong Wang & Bikram Manandhar & Shengping Ding, 2021. "Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    6. Ankur Srivastava & Nikul Kumari & Minotshing Maza, 2020. "Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration Capacity Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3779-3794, September.
    7. José I. Barredo & Guy Engelen, 2010. "Land Use Scenario Modeling for Flood Risk Mitigation," Sustainability, MDPI, vol. 2(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Marino & Margherita Palmieri & Angelo Marucci & Mariangela Soraci & Antonio Barone & Silvia Pili, 2023. "Linking Flood Risk Mitigation and Food Security: An Analysis of Land-Use Change in the Metropolitan Area of Rome," Land, MDPI, vol. 12(2), pages 1-23, January.
    2. Carlos Rosero & Xosé Otero & Cinthya Bravo & Catherine Frey, 2023. "Multitemporal Incidence of Landscape Fragmentation in a Protected Area of Central Andean Ecuador," Land, MDPI, vol. 12(2), pages 1-21, February.
    3. Yu Cao & Liyan Huang & Nur Mardhiyah Aziz & Syahrul Nizam Kamaruzzaman, 2022. "Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review," Land, MDPI, vol. 11(10), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Chen & Rongrong Liu & Maoxian Zhou, 2023. "Delineation of Urban Growth Boundary Based on Habitat Quality and Carbon Storage: A Case Study of Weiyuan County in Gansu, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    2. Gowhar Meraj & Shakil Romshoo & A. Yousuf & Sadaff Altaf & Farrukh Altaf, 2015. "Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 153-175, May.
    3. Li Li & Qidi Yu & Ling Gao & Bin Yu & Zhipeng Lu, 2021. "The Effect of Urban Land-Use Change on Runoff Water Quality: A Case Study in Hangzhou City," IJERPH, MDPI, vol. 18(20), pages 1-12, October.
    4. Fayaz Ahmad Lone & M. Imran Ganaie & Showkat A. Ganaie & M. Shafi Bhat & Javeed Ahmad Rather, 2023. "Drivers of agricultural land-use change in Kashmir valley - an application of mixed method approach," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-20, December.
    5. Broitman, Dani & Ben-Haim, Yakov, 2022. "Forecasting residential sprawl under uncertainty: An info-gap analysis," Land Use Policy, Elsevier, vol. 120(C).
    6. Chidozie Charles Nnaji & Nkpa Mba Ogarekpe & Ekene Jude Nwankwo, 2022. "Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9598-9622, July.
    7. Harik, G. & Alameddine, I. & Zurayk, R. & El-Fadel, M., 2023. "Uncertainty in forecasting land cover land use at a watershed scale: Towards enhanced sustainable land management," Ecological Modelling, Elsevier, vol. 486(C).
    8. Vitus Tankpa & Li Wang & Alfred Awotwi & Leelamber Singh & Samit Thapa & Raphael Ane Atanga & Xiaomeng Guo, 2021. "Modeling the effects of historical and future land use/land cover change dynamics on the hydrological response of Ashi watershed, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7883-7912, May.
    9. Dawid Kudas & Agnieszka Wnęk & Ľubica Hudecová & Robert Fencik, 2024. "Spatial Diversity Changes in Land Use and Land Cover Mix in Central European Capitals and Their Commuting Zones from 2006 to 2018," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    10. Fuli Wang & Wei Fu & Jiancheng Chen, 2022. "Spatial–Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use," Land, MDPI, vol. 11(12), pages 1-15, December.
    11. Bhanage Vinayak & Han Soo Lee & Shirishkumar Gedem, 2021. "Prediction of Land Use and Land Cover Changes in Mumbai City, India, Using Remote Sensing Data and a Multilayer Perceptron Neural Network-Based Markov Chain Model," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    12. Ankur Srivastava & Proloy Deb & Nikul Kumari, 2020. "Multi-Model Approach to Assess the Dynamics of Hydrologic Components in a Tropical Ecosystem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 327-341, January.
    13. Neema Simon Sumari & Gang Xu & Fanan Ujoh & Prosper Issahaku Korah & Obas John Ebohon & Neema Nicodemus Lyimo, 2019. "A Geospatial Approach to Sustainable Urban Planning: Lessons for Morogoro Municipal Council, Tanzania," Sustainability, MDPI, vol. 11(22), pages 1-14, November.
    14. Britta Höllermann & Kristian Näschen & Naswiru Tibanyendela & Julius Kwesiga & Mariele Evers, 2021. "Dynamics of Human–Water Interactions in the Kilombero Valley, Tanzania: Insights from Farmers’ Aspirations and Decisions in an Uncertain Environment," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(4), pages 980-999, August.
    15. Nangware Kajia Msofe & Lianxi Sheng & Zhenxin Li & Lingyan Wang & Nangware Kajia Msofe & Nangware Kajia Msofe & Lianxi Sheng & Zhenxin Li & Lingyan Wang & Lyimo J, 2019. "Influence of Agricultural Land Use Change on the Selected Physico-Chemical Soil Properties in Kilombero Valley Floodplain, Southeastern Tanzania," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 21(5), pages 01-11, October.
    16. Ayyad, Saher & Karimi, Poolad & Langensiepen, Matthias & Ribbe, Lars & Rebelo, Lisa-Maria & Becker, Mathias, 2022. "Remote sensing assessment of available green water to increase crop production in seasonal floodplain wetlands of sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 269(C).
    17. Xue Zhou & Yang Zhou, 2021. "Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China," Land, MDPI, vol. 10(9), pages 1-17, September.
    18. Ailton Alves de Carvalho & Marcelo José Gama da Silva & Fabiane Rabelo da Costa Batista & Jucilene Silva Araújo & Abelardo Antônio de Assunção Montenegro & Thieres George Freire da Silva & Thayná Alic, 2023. "Spatio-Temporal Dynamics and Physico-Hydrological Trends in Rainfall, Runoff and Land Use in Paraíba Watershed," Geographies, MDPI, vol. 3(4), pages 1-14, November.
    19. Kristian Näschen & Bernd Diekkrüger & Mariele Evers & Britta Höllermann & Stefanie Steinbach & Frank Thonfeld, 2019. "The Impact of Land Use/Land Cover Change (LULCC) on Water Resources in a Tropical Catchment in Tanzania under Different Climate Change Scenarios," Sustainability, MDPI, vol. 11(24), pages 1-28, December.
    20. Muhammad Hadi Saputra & Han Soo Lee, 2019. "Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton," Sustainability, MDPI, vol. 11(11), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1271-:d:882680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.