IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i3d10.1007_s11069-024-06924-3.html
   My bibliography  Save this article

Flood susceptibility mapping in river basins: a risk analysis using AHP-TOPISIS-2 N support and vector machine

Author

Listed:
  • Admir José Giacon

    (São Paulo State University)

  • Alexandre Marco Silva

    (São Paulo State University)

Abstract

Due to the damage caused by floods, mapping areas susceptible to this natural phenomenon plays a fundamental role in environmental planning. Therefore, it becomes essential to understand and map the conditions and factors involved in areas affected by geo-hydro-meteorological events. In this context, we mapped areas susceptible to flooding using the AHP-TOPSIS-2 N, Support Vector Machine (SVM), and a hybrid model, AHP-SVM, the Sorocaba-Medio Tiete basin, that is a subtropical, densely populated river basin located in Brazilian territory. We considered 11 conditioning factors related to hydrogeomorphological and anthropological characteristics, and 382 historical flood and non-flood points. We assessed the accuracy of the modeling using the Area Under the Curve – AUC. The AHP-SVM model presented the best efficiency among the models analyzed (AUC = 0.962). The principal conditioning factors related to flooding were land cover and land use. We argue that models can be successfully applied as a scientific tool in the mapping of areas susceptible to flooding by public managers and risk managers since the resultant maps can help mitigate the negative impacts related to the flood event.

Suggested Citation

  • Admir José Giacon & Alexandre Marco Silva, 2025. "Flood susceptibility mapping in river basins: a risk analysis using AHP-TOPISIS-2 N support and vector machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(3), pages 3239-3266, February.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06924-3
    DOI: 10.1007/s11069-024-06924-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06924-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06924-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wanderson Luiz-Silva & Antonio Carlos Oscar-Júnior, 2022. "Climate extremes related with rainfall in the State of Rio de Janeiro, Brazil: a review of climatological characteristics and recorded trends," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 713-732, October.
    2. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    3. Olabi, A.G. & Obaideen, Khaled & Elsaid, Khaled & Wilberforce, Tabbi & Sayed, Enas Taha & Maghrabie, Hussein M. & Abdelkareem, Mohammad Ali, 2022. "Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Chinh Luu & Quynh Duy Bui & Romulus Costache & Luan Thanh Nguyen & Thu Thuy Nguyen & Tran Phong & Hiep Le & Binh Thai Pham, 2021. "Flood-prone area mapping using machine learning techniques: a case study of Quang Binh province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3229-3251, September.
    5. Eduardo Alves Neder & Fabiano Araújo Moreira & Michele Dalla Fontana & Roger Rodrigues Torres & David Montenegro Lapola & Maria da Penha Costa Vasconcellos & Ana Maria Barbieri Bedran-Martins & Arlind, 2021. "Urban adaptation index: assessing cities readiness to deal with climate change," Climatic Change, Springer, vol. 166(1), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Hao Wang & Guohua Liu & Zongshan Li & Xin Ye & Bojie Fu & Yihe Lü, 2017. "Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    5. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    6. Christina Kassara & Christos Barboutis & Anastasios Bounas, 2025. "Favorable stopover sites and fuel load dynamics of spring bird migrants under a changing climate," Climatic Change, Springer, vol. 178(1), pages 1-19, January.
    7. Portalier, S.M.J. & Candau, J.-N. & Lutscher, F., 2024. "Larval mortality from phenological mismatch can affect outbreak frequency and severity of a boreal forest defoliator," Ecological Modelling, Elsevier, vol. 493(C).
    8. A. Ogden & J. Innes, 2008. "Climate change adaptation and regional forest planning in southern Yukon, Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(8), pages 833-861, October.
    9. Ahmed M. Nassef & Ahmed Handam, 2022. "Parameter Estimation-Based Slime Mold Algorithm of Photocatalytic Methane Reforming Process for Hydrogen Production," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
    10. Ainun Hasanah & Jing Wu, 2025. "Bibliometric analysis and global research trends of climate change and cities studies for 30 years (1990–2021)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 5573-5617, March.
    11. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    12. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    13. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    14. Debora Sotto & Arlindo Philippi & Tan Yigitcanlar & Md Kamruzzaman, 2019. "Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice?," Energies, MDPI, vol. 12(18), pages 1-31, September.
    15. Jilin Wu & Manhong Yang & Jinyou Zuo & Ningling Yin & Yimin Yang & Wenhai Xie & Shuiliang Liu, 2024. "Spatio-Temporal Evolution of Ecological Resilience in Ecologically Fragile Areas and Its Influencing Factors: A Case Study of the Wuling Mountains Area, China," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
    16. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    17. Annie Paradis & Joe Elkinton & Katharine Hayhoe & John Buonaccorsi, 2008. "Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 541-554, June.
    18. Basem E. Elnaghi & M. N. Abelwhab & Ahmed M. Ismaiel & Reham H. Mohammed, 2023. "Solar Hydrogen Variable Speed Control of Induction Motor Based on Chaotic Billiards Optimization Technique," Energies, MDPI, vol. 16(3), pages 1-33, January.
    19. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    20. Aishajiang Aili & Xu Hailiang & Abdul Waheed & Zhao Wanyu & Xu Qiao & Zhao Xinfeng & Zhang Peng, 2024. "The Dynamics of Vegetation Evapotranspiration and Its Response to Surface Meteorological Factors in the Altay Mountains, Northwest China," Sustainability, MDPI, vol. 16(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06924-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.