IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i1d10.1007_s11069-024-06829-1.html
   My bibliography  Save this article

Critical early warning of underground debris flows in mines based on rainfall–collapse characteristics

Author

Listed:
  • Jing Zhang

    (Kunming University of Science and Technology)

  • Xinglong Feng

    (Yunnan Diqing Nonferrous Metals Co., Ltd)

  • Aixiang Wu

    (University of Science and Technology Beijing)

  • Haiyong Cheng

    (Kunming University of Science and Technology
    Kunming University of Science and Technology)

  • Zhengrong Li

    (Yunnan Diqing Nonferrous Metals Co., Ltd)

  • Shaoyong Wang

    (University of Science and Technology Beijing)

  • Wei Sun

    (Kunming University of Science and Technology)

  • Chong Chen

    (University of Science and Technology Beijing)

Abstract

The natural caving method of mining is susceptible to underground debris flow disasters under the combined influence of high-intensity rainfall and surface subsidence. Research on early warning schemes for underground debris flows utilizes characteristic parameters such as the effective cumulative rainfall in the early stage, the daily triggered rainfall, and the collapse area as the analysis indices. The random forest algorithm is modified based on variable weight theory to obtain the index weight, and an occurrence probability and hazard analysis of underground debris flows is conducted via the Technique for Order Preference by Similarity to Ideal Solution and the Vlsekriterjumska Optimizacija I Kompromisno Resenje combination evaluation. The comprehensive hazard evaluation factor is used to obtain the characteristic index threshold under different hazard levels, thus achieving hierarchical early warning of underground debris flows in mines. The results reveal that hazard comprehensive evaluation factors of 0–0.2, 0.2–0.5, and > 0.5 correspond to low, moderate, and high hazards, respectively. The hazard level under the coupling condition of the mine global characteristic parameters is given, and an early warning method is established to prevent underground mine debris flows. This evaluation method has implications for early warning of underground debris flows in mines, thus preventing disasters and ensuring production safety.

Suggested Citation

  • Jing Zhang & Xinglong Feng & Aixiang Wu & Haiyong Cheng & Zhengrong Li & Shaoyong Wang & Wei Sun & Chong Chen, 2025. "Critical early warning of underground debris flows in mines based on rainfall–collapse characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 423-445, January.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:1:d:10.1007_s11069-024-06829-1
    DOI: 10.1007/s11069-024-06829-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06829-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06829-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    2. Li, Hongmin & Wang, Jianzhou & Lu, Haiyan & Guo, Zhenhai, 2018. "Research and application of a combined model based on variable weight for short term wind speed forecasting," Renewable Energy, Elsevier, vol. 116(PA), pages 669-684.
    3. Xingdong Zhao & Qiankun Zhu, 2020. "Analysis of the surface subsidence induced by sublevel caving based on GPS monitoring and numerical simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3063-3083, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    2. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    3. Hae-Yeol Kang & Seung Taek Chae & Eun-Sung Chung, 2023. "Quantifying Medium-Sized City Flood Vulnerability Due to Climate Change Using Multi-Criteria Decision-Making Techniques: Case of Republic of Korea," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
    4. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    5. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    6. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    7. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    8. Mohit Jain & Gunjan Soni & Deepak Verma & Rajendra Baraiya & Bharti Ramtiyal, 2023. "Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    9. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    10. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    11. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    12. Kuang-Hua Hu & Wei Jianguo & Gwo-Hshiung Tzeng, 2017. "Risk Factor Assessment Improvement for China’s Cloud Computing Auditing Using a New Hybrid MADM Model," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 737-777, May.
    13. Zhang, Ziyuan & Wang, Jianzhou & Wei, Danxiang & Luo, Tianrui & Xia, Yurui, 2023. "A novel ensemble system for short-term wind speed forecasting based on Two-stage Attention-Based Recurrent Neural Network," Renewable Energy, Elsevier, vol. 204(C), pages 11-23.
    14. Wabukala, Benard M. & Bergland, Olvar & Mukisa, Nicholas & Adaramola, Muyiwa S. & Watundu, Susan & Orobia, Laura A. & Rudaheranwa, Nichodemus, 2024. "Electricity security in Uganda: Measurement and policy priorities," Utilities Policy, Elsevier, vol. 91(C).
    15. Wei, Sen & Yang, Hanqing & Bai, Yu & Wang, Yuanqing, 2025. "Road safety assessment of small management units considering smart roadway retrofitting," Transport Policy, Elsevier, vol. 167(C), pages 28-41.
    16. Fernando Rojas & Peter Wanke & Víctor Leiva & Mauricio Huerta & Carlos Martin-Barreiro, 2022. "Modeling Inventory Cost Savings and Supply Chain Success Factors: A Hybrid Robust Compromise Multi-Criteria Approach," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    17. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    18. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    19. Büsing, Christina & Goetzmann, Kai-Simon & Matuschke, Jannik & Stiller, Sebastian, 2017. "Reference points and approximation algorithms in multicriteria discrete optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 829-840.
    20. Abbas Keramati & Fatemeh Shapouri, 2016. "Multidimensional appraisal of customer relationship management: integrating balanced scorecard and multi criteria decision making approaches," Information Systems and e-Business Management, Springer, vol. 14(2), pages 217-251, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:1:d:10.1007_s11069-024-06829-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.