IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i12d10.1007_s11069-025-07343-8.html
   My bibliography  Save this article

Marine environmental risk assessment based on cloud model and projection pursuit: a case study of the Milan ship typhoon accident in the South China Sea

Author

Listed:
  • Yaoshuai Luo

    (Nanjing University of Posts and Telecommunications
    Key Laboratory of High Impact Weather(Special), China Meteorological Administration)

  • Mei Hong

    (National University of Defense Technology)

  • Longxia Qian

    (Nanjing University of Posts and Telecommunications
    Key Laboratory of High Impact Weather(Special), China Meteorological Administration)

  • Dongyu Li

    (Nanjing University of Posts and Telecommunications)

Abstract

Risk assessment of severe weather conditions for ocean-going ships provides security guarantees for marine transportation. Due to the diversity of indicators and the uncertainty in marine environment, it is difficult to construct an objective and quantitative risk assessment model. This study proposes a new marine environmental risk assessment model based on the cloud model and projection pursuit. First, through the analysis of marine environmental characteristics and ship accidents, a risk index system and five-level risk classification criteria are proposed. Second, the backward cloud generator is used to generate the cloud parameters of the assessment indicators, and the x-condition cloud generator is applied to build the membership function. Finally, the projection pursuit model is constructed to realize the fusion of membership degrees, and the risk level is obtained by combining the principle of maximum membership degree. The new model is applied to the Milan ship typhoon accident in the South China Sea to evaluate the seasonal risk of each hazard factor and the marine environmental risk of accident nodes. It is found that the risk of each hazard factor in the South China Sea has obvious seasonal characteristics as well as spatial distribution characteristics. The results of the sea area where the accident of the “Milan” ship occurred are extremely high, while the starting point and the chosen docking site are rated as extremely low. This is consistent with the actual situation and confirms the validity and practicality of the model.

Suggested Citation

  • Yaoshuai Luo & Mei Hong & Longxia Qian & Dongyu Li, 2025. "Marine environmental risk assessment based on cloud model and projection pursuit: a case study of the Milan ship typhoon accident in the South China Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(12), pages 14039-14065, July.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:12:d:10.1007_s11069-025-07343-8
    DOI: 10.1007/s11069-025-07343-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07343-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07343-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lijia Chen & Yanfei Tian, 2021. "Risk Cloud Model for Evaluating Nautical Navigational Environments," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, April.
    2. Zuo Sun & Yingjie Liu & Qingjie Qi & Wengang Liu & Dan Li & Jiamei Chai, 2022. "Risk Assessment of Coal Mine Flood Disasters Based on Projection Pursuit Clustering Model," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    3. Kevin X. Li & Yulan Wang & Jie Min, 2009. "Quantitative analysis of materiality in marine insurance," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(5), pages 437-455, October.
    4. Yuliang Yang & Chaoqun Cui, 2022. "Which Provincial Regions in China Should Give Priority to the Redevelopment of Abandoned Coal Mines? A Redevelopment Potential Evaluation Based Analysis," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    5. Sabine Knapp & Philip Hans Franses, 2007. "A global view on port state control: econometric analysis of the differences across port state control regimes," Maritime Policy & Management, Taylor & Francis Journals, vol. 34(5), pages 453-482, October.
    6. Zhang, D. & Yan, X.P. & Yang, Z.L. & Wall, A. & Wang, J., 2013. "Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 93-105.
    7. Chi Zhang & Hong Zhang & Xiongying Ma & Min Zhang & Shiwei Wang, 2018. "Driving Risk Assessment in Work Zones Using Cloud Model," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-9, August.
    8. Weihao Ma & Tianfu Lu & Dongfang Ma & Dianhai Wang & Fengzhong Qu, 2021. "Ship route and speed multi-objective optimization considering weather conditions and emission control area regulations," Maritime Policy & Management, Taylor & Francis Journals, vol. 48(8), pages 1053-1068, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    2. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    4. Fan, Lixian & Luo, Meifeng & Yin, Jinbo, 2014. "Flag choice and Port State Control inspections—Empirical evidence using a simultaneous model," Transport Policy, Elsevier, vol. 35(C), pages 350-357.
    5. Yang, Zhisen & Yang, Zaili & Yin, Jingbo & Qu, Zhuohua, 2018. "A risk-based game model for rational inspections in port state control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 477-495.
    6. Wang, Yuhong & Zhang, Fan & Yang, Zhisen & Yang, Zaili, 2021. "Incorporation of deficiency data into the analysis of the dependency and interdependency among the risk factors influencing port state control inspection," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    7. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    9. Yin, Jingbo & Fan, Lixian, 2018. "Survival analysis of the world ship demolition market," Transport Policy, Elsevier, vol. 63(C), pages 141-156.
    10. Yang, Zaili & Ng, Adolf K.Y. & Wang, Jin, 2014. "A new risk quantification approach in port facility security assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 72-90.
    11. Sui, Zhongyi & Wang, Shuaian, 2025. "Traffic advisory for ship encounter situation based on linear dynamic system," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    12. Zhou, Wei & Zhang, Keang & Zhang, Ying & Duan, Yunlong, 2021. "Operation strategies with respect to insurance subsidy optimization for online retailers dealing with large items," International Journal of Production Economics, Elsevier, vol. 232(C).
    13. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    14. Wang, Yuhong & Li, Pengchang & Hong, Cheng & Yang, Zaili, 2025. "Causation analysis of ship collisions using a TM-FRAM model," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    15. Guizhen Zhang & Vinh V. Thai & Adrian Wing‐Keung Law & Kum Fai Yuen & Hui Shan Loh & Qingji Zhou, 2020. "Quantitative Risk Assessment of Seafarers’ Nonfatal Injuries Due to Occupational Accidents Based on Bayesian Network Modeling," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 8-23, January.
    16. Adland, Roar & Jia, Haiying & Lode, Tønnes & Skontorp, Jørgen, 2021. "The value of meteorological data in marine risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    17. Molin Sun & Zhongyi Zheng & Longhui Gang, 2018. "Uncertainty Analysis of the Estimated Risk in Formal Safety Assessment," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    18. Lu, Cheng & Aritua, Bernard & de Leijer, Harrie & van Liere, Richard & Lee, Paul Tae-Woo, 2023. "Exploring causes of growth in China's inland waterway transport, 1978–2018: Documentary analysis approach," Transport Policy, Elsevier, vol. 136(C), pages 47-58.
    19. Knapp, S. & van de Velden, M., 2010. "Visualization of Ship Risk Profiles for the Shipping Industry," ERIM Report Series Research in Management ERS-2010-013-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:12:d:10.1007_s11069-025-07343-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.