IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i4d10.1007_s11069-023-06344-9.html
   My bibliography  Save this article

Analysis of drought characteristics and comparison of historical typical years with 2022 drought in the Yangtze River Basin

Author

Listed:
  • Lisong Xing

    (Ministry of Emergency Management of China)

  • Ruxin Zhao

    (Ministry of Emergency Management of China
    Ministry of Emergency Management of China)

  • Hongquan Sun

    (Ministry of Emergency Management of China
    Ministry of Emergency Management of China)

  • Ming Li

    (Ministry of Emergency Management of China
    China University of Mining and Technology (Beijing))

  • Zhuoyan Tan

    (Ministry of Emergency Management of China)

Abstract

In 2022, the Yangtze River Basin (YRB) experienced an unprecedented drought with long-term, large-scale, and severe consequences for agriculture, ecology, industrial production, and economic life. In order to investigate the evolution characteristics of the drought event in 2022, and discuss the similarities and differences with its similar historical drought years, this study focused on droughts during July–October (summer and autumn). The Standardized Precipitation Evapotranspiration Index was employed as a drought indicator. To analyze the spatial and temporal distribution patterns of drought and its mutability and periodicity in the YRB during 1951–2022, this study utilized the Empirical Orthogonal Function (EOF), Pettitt test, and wavelet analysis methods. We obtained similar drought years with the 2022 drought spatial pattern using the clustering method. The results show that the drought in the YRB in 2022 mainly presented a "basin-wide" drought spatial distribution pattern based on the first mode of EOF. The main periodicity of the "basin-wide" drought spatial distribution pattern was about 50 years. The July drought distribution patterns in 1952, 1953, and 2006 were most similar to that in 2022; however, the drought evolution patterns were obviously different after August. In comparison, the YRB experienced the largest drought-impacted area in 2022, and the impacted area proportions of severe and extreme drought increased at the fastest speed.

Suggested Citation

  • Lisong Xing & Ruxin Zhao & Hongquan Sun & Ming Li & Zhuoyan Tan, 2024. "Analysis of drought characteristics and comparison of historical typical years with 2022 drought in the Yangtze River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3699-3718, March.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06344-9
    DOI: 10.1007/s11069-023-06344-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06344-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06344-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    2. Donald Wilhite & Mark Svoboda & Michael Hayes, 2007. "Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 763-774, May.
    3. Haoran Hao & Mingxiang Yang & Hao Wang & Ningpeng Dong, 2023. "Human activities reshape the drought regime in the Yangtze River Basin: a land surface-hydrological modelling analysis with representations of dam operation and human water use," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2097-2121, September.
    4. Ximeng Xu & Qiuhong Tang, 2021. "Meteorological disaster frequency at prefecture-level city scale and induced losses in mainland China during 2011–2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 827-844, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rohit Kumar Yadav & Suresh Chand Rai & Md Riyazuddin Khan & Karuna Shree, 2025. "Drought's silent symphony and unmasking the invisible weight on human life in Chhatarpur of Bundelkhand Region, India," Climatic Change, Springer, vol. 178(3), pages 1-23, March.
    2. Laurie S. Huning & Sayed M. Bateni & Michael Hayes & Sarah Quynh-Giang Ho & Susantha Jayasinghe & Rohini Kumar & Carlos Lima & Charlotte A. Love & Kaveh Madani & Yannis Markonis & Mir A. Matin & Chiyu, 2024. "Sustainability nexus analytics, informatics, and data (AID): Drought," Sustainability Nexus Forum, Springer, vol. 32(1), pages 1-12, December.
    3. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    4. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    5. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    6. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    7. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    8. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    9. A. S. Giannikopoulou & F. K. Gad & E. Kampragou & D. Assimacopoulos, 2017. "Risk-Based Assessment of Drought Mitigation Options: the Case of Syros Island, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 655-669, January.
    10. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Abdoulaye Sy & Catherine Araujo-Bonjean & Marie-Eliette Dury & Nourddine Azzaoui & Arnaud Guillin, 2021. "An Extreme Value Mixture model to assess drought hazard in West Africa," Working Papers hal-03297023, HAL.
    12. Araneda-Cabrera, Ronnie J. & Bermúdez, María & Puertas, Jerónimo, 2021. "Assessment of the performance of drought indices for explaining crop yield variability at the national scale: Methodological framework and application to Mozambique," Agricultural Water Management, Elsevier, vol. 246(C).
    13. Corwin, D.L. & Scudiero, E. & Zaccaria, D., 2022. "Modified ECa – ECe protocols for mapping soil salinity under micro-irrigation," Agricultural Water Management, Elsevier, vol. 269(C).
    14. Francisco José Del-Toro-Guerrero & Luis Walter Daesslé & Rodrigo Méndez-Alonzo & Thomas Kretzschmar, 2022. "Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico," Land, MDPI, vol. 11(6), pages 1-19, May.
    15. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    16. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    17. Susanna Grasso & Pierluigi Claps & Daniele Ganora & Andrea Libertino, 2021. "A Web‐based Open‐source Geoinformation Tool for Regional Water Resources Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 675-687, January.
    18. E. Preziosi & A. Bon & E. Romano & A. Petrangeli & S. Casadei, 2013. "Vulnerability to Drought of a Complex Water Supply System. The Upper Tiber Basin Case Study (Central Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4655-4678, October.
    19. -, 2015. "La economía del cambio climático en América Latina y el Caribe: paradojas y desafíos del desarrollo sostenible," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 37310 edited by Cepal, September.
    20. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06344-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.