IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i17p6114-d402644.html
   My bibliography  Save this article

Quantification of the Effects of Droughts on Daily Mortality in Spain at Different Timescales at Regional and National Levels: A Meta-Analysis

Author

Listed:
  • Coral Salvador

    (EPhysLab (Environmental Physics Laboratory), CIM-UVIGO, Universidade de Vigo, 32004 Ourense, Spain)

  • Raquel Nieto

    (EPhysLab (Environmental Physics Laboratory), CIM-UVIGO, Universidade de Vigo, 32004 Ourense, Spain)

  • Cristina Linares

    (Department of Epidemiology and Biostatistics, Carlos III National Institute of Health (Instituto de Salud Carlos III/ISCIII), National School of Public Health, 28029 Madrid, Spain)

  • Julio Díaz

    (Department of Epidemiology and Biostatistics, Carlos III National Institute of Health (Instituto de Salud Carlos III/ISCIII), National School of Public Health, 28029 Madrid, Spain)

  • Luis Gimeno

    (EPhysLab (Environmental Physics Laboratory), CIM-UVIGO, Universidade de Vigo, 32004 Ourense, Spain)

Abstract

A performance assessment of two different indices (the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI)) for monitoring short-term and short–medium-term drought impacts on daily specific-cause mortality in Spain was conducted. To achieve a comprehensive, nationwide view, a meta-analysis was performed using a combination of provincial relative risks (RRs). Moreover, the subdivisions of Spain based on administrative, climatic, and demographic criteria to obtain the measures of combined risks were also taken into account. The results of the SPEI and SPI calculated at the same timescale were similar. Both showed that longer drought events produced greater RR values, for respiratory mortality. However, at the local administrative level, Galicia, Castilla-y-Leon, and Extremadura showed the greatest risk of daily mortality associated with drought episodes, with Andalucía, País Vasco, and other communities being notably impacted. Based on climatic regionalization, Northwest, Central, and Southern Spain were the regions most affected by different drought conditions for all analyzed causes of daily mortality, while the Mediterranean coastal region was less affected. Demographically, the regions with the highest proportion of people aged 65 years of age and over reflected the greatest risk of daily natural, circulatory, and respiratory mortality associated with drought episodes.

Suggested Citation

  • Coral Salvador & Raquel Nieto & Cristina Linares & Julio Díaz & Luis Gimeno, 2020. "Quantification of the Effects of Droughts on Daily Mortality in Spain at Different Timescales at Regional and National Levels: A Meta-Analysis," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6114-:d:402644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/17/6114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/17/6114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    2. Donald Wilhite & Mark Svoboda & Michael Hayes, 2007. "Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 763-774, May.
    3. Anna Yusa & Peter Berry & June J.Cheng & Nicholas Ogden & Barrie Bonsal & Ronald Stewart & Ruth Waldick, 2015. "Climate Change, Drought and Human Health in Canada," IJERPH, MDPI, vol. 12(7), pages 1-54, July.
    4. Lei Ye & Ke Shi & Zhuohang Xin & Chao Wang & Chi Zhang, 2019. "Compound Droughts and Heat Waves in China," Sustainability, MDPI, vol. 11(12), pages 1-14, June.
    5. Aderita Sena & Christovam Barcellos & Carlos Freitas & Carlos Corvalan, 2014. "Managing the Health Impacts of Drought in Brazil," IJERPH, MDPI, vol. 11(10), pages 1-15, October.
    6. Sergio Vicente-Serrano, 2006. "Differences in Spatial Patterns of Drought on Different Time Scales: An Analysis of the Iberian Peninsula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 37-60, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeongjin Gwon & Yuanyuan Ji & Jesse E. Bell & Azar M. Abadi & Jesse D. Berman & Austin Rau & Ronald D. Leeper & Jared Rennie, 2023. "The Association between Drought Exposure and Respiratory-Related Mortality in the United States from 2000 to 2018," IJERPH, MDPI, vol. 20(12), pages 1-13, June.
    2. Babak Jalalzadeh Fard & Jagadeesh Puvvula & Jesse E. Bell, 2022. "Evaluating Changes in Health Risk from Drought over the Contiguous United States," IJERPH, MDPI, vol. 19(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Intekhab Alam & Shinji Otani & Abir Nagata & Mohammad Shahriar Khan & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2022. "Short- and Long-Term Effects of Drought on Selected Causes of Mortality in Northern Bangladesh," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    2. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    3. Emre Topçu, 2022. "Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 697-723, May.
    4. Kumar Amrit & Rajendra P. Pandey & Surendra K. Mishra, 2018. "Characteristics of meteorological droughts in northwestern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 561-582, November.
    5. Aderita Sena & Kristie Ebi, 2020. "When Land Is Under Pressure Health Is Under Stress," IJERPH, MDPI, vol. 18(1), pages 1-24, December.
    6. Júlia Alves Menezes & Ana Paula Madureira & Rhavena Barbosa dos Santos & Isabela de Brito Duval & Pedro Regoto & Carina Margonari & Martha Macêdo de Lima Barata & Ulisses Confalonieri, 2021. "Analyzing Spatial Patterns of Health Vulnerability to Drought in the Brazilian Semiarid Region," IJERPH, MDPI, vol. 18(12), pages 1-19, June.
    7. Tayeb Raziei & Diogo Martins & Isabella Bordi & João Santos & Maria Portela & Luis Pereira & Alfonso Sutera, 2015. "SPI Modes of Drought Spatial and Temporal Variability in Portugal: Comparing Observations, PT02 and GPCC Gridded Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 487-504, January.
    8. Babak Jalalzadeh Fard & Jagadeesh Puvvula & Jesse E. Bell, 2022. "Evaluating Changes in Health Risk from Drought over the Contiguous United States," IJERPH, MDPI, vol. 19(8), pages 1-16, April.
    9. Tayeb Raziei & Isabella Bordi & Luis Pereira, 2013. "Regional Drought Modes in Iran Using the SPI: The Effect of Time Scale and Spatial Resolution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1661-1674, April.
    10. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    11. Linda Theron & Motlalepule Ruth Mampane & Liesel Ebersöhn & Angie Hart, 2020. "Youth Resilience to Drought: Learning from a Group of South African Adolescents," IJERPH, MDPI, vol. 17(21), pages 1-14, October.
    12. L. Vergni & F. Todisco & B. Lena, 2021. "Evaluation of the similarity between drought indices by correlation analysis and Cohen's Kappa test in a Mediterranean area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2187-2209, September.
    13. Araceli Martin-Candilejo & Francisco J. Martin-Carrasco & Ana Iglesias & Luis Garrote, 2023. "Heading into the Unknown? Exploring Sustainable Drought Management in the Mediterranean Region," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    14. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    15. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    16. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    17. Anna Yusa & Peter Berry & June J.Cheng & Nicholas Ogden & Barrie Bonsal & Ronald Stewart & Ruth Waldick, 2015. "Climate Change, Drought and Human Health in Canada," IJERPH, MDPI, vol. 12(7), pages 1-54, July.
    18. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    19. Tayeb Raziei & Isabella Bordi & Luis Pereira, 2011. "An Application of GPCC and NCEP/NCAR Datasets for Drought Variability Analysis in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1075-1086, March.
    20. A. S. Giannikopoulou & F. K. Gad & E. Kampragou & D. Assimacopoulos, 2017. "Risk-Based Assessment of Drought Mitigation Options: the Case of Syros Island, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 655-669, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6114-:d:402644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.