IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i1d10.1007_s11069-023-06231-3.html
   My bibliography  Save this article

At-site flood frequency analysis in Brazil

Author

Listed:
  • Marlon Heitor Kunst Valentini

    (Federal University of Pelotas)

  • Samuel Beskow

    (Federal University of Pelotas)

  • Tamara Leitzke Caldeira Beskow

    (Federal University of Pelotas)

  • Carlos Rogério Mello

    (Federal University of Lavras)

  • Felício Cassalho

    (George Mason University)

  • Maria Eduarda Silva Silva

    (Center for Technological Development/Water Resources Engineering)

Abstract

Governmental research agencies from Germany, Italy, Spain, and UK have suggested the use of specific two- and three-parameter probability density functions (PDFs) for estimating the magnitude and frequency of annual maximum streamflow (AMS). In Brazil, there are no guidelines concerning the use of multiparameter PDFs to model AMS, with most applications relying on two-parameter distributions. Considering the worldwide promising results when using multiparameter PDFs, here we focused on the evaluation of ten PDFs to model AMS over all gauged streams of Brazil. The methodology developed for this study consisted of the: (i) acquisition of streamflow data; (ii) organization of the AMS series; (iii) screening of AMS series considering temporal and statistical criteria; (iv) fit of the following PDFs to the AMS series based on the L-moments method: Gumbel, Gamma, Generalized Logistic, Generalized Normal, Generalized Pareto, three-parameter Log-Normal, Pearson type 3, Generalized Extreme Value, Kappa, and Wakeby; (v) quantile estimation; and (vi) PDF performance assessment according to the Filliben test and the relative absolute error (RAE). Based on the almost 4 thousand AMS series considered on this study, we concluded that: (i) Gumbel and Gamma provided poor performance (more than 17% of non-satisfactory fits); (ii) the multiparameter PDFs (Wakeby and Kappa) outperformed all other PDFs; (iii) Gumbel and Generalized Extreme Value had the highest RAE values for quantile estimate; and (iv) this study contributes to the scientific advances reported in the recent statistical hydrology literature and can provide local decision makers with the necessary technical information for developing national design flood guidelines. .

Suggested Citation

  • Marlon Heitor Kunst Valentini & Samuel Beskow & Tamara Leitzke Caldeira Beskow & Carlos Rogério Mello & Felício Cassalho & Maria Eduarda Silva Silva, 2024. "At-site flood frequency analysis in Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 601-618, January.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06231-3
    DOI: 10.1007/s11069-023-06231-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06231-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06231-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayesha Rahman & Ataur Rahman & Mohammad Zaman & Khaled Haddad & Amimul Ahsan & Monzur Imteaz, 2013. "A study on selection of probability distributions for at-site flood frequency analysis in Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1803-1813, December.
    2. A. Agarwal & R. Maheswaran & J Kurths & R. Khosa, 2016. "Wavelet Spectrum and Self-Organizing Maps-Based Approach for Hydrologic Regionalization -a Case Study in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4399-4413, September.
    3. Marcelo Coelho & Cristovão Vicente Scapulatempo Fernandes & Daniel Henrique Marco Detzel, 2019. "Uncertainty analysis in the detection of trends, cycles, and shifts in water resources time series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2629-2644, June.
    4. Leonardo Noto & Goffredo La Loggia, 2009. "Use of L-Moments Approach for Regional Flood Frequency Analysis in Sicily, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2207-2229, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felício Cassalho & Samuel Beskow & Carlos Rogério Mello & Maíra Martim Moura & Laura Kerstner & Leo Fernandes Ávila, 2018. "At-Site Flood Frequency Analysis Coupled with Multiparameter Probability Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 285-300, January.
    2. Naser Dehghanian & S. Saeid Mousavi Nadoushani & Bahram Saghafian & Ruhangiz Akhtari, 2019. "Performance Evaluation of a Fuzzy Hybrid Clustering Technique to Identify Flood Source Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4621-4636, October.
    3. T. K. Drissia & V. Jothiprakash & A. B. Anitha, 2019. "Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1013-1037, February.
    4. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    5. Xi Yang & Zhihe Chen & Zhen Li, 2024. "Regional Water Environmental Carrying Capacity: Changing Trends and Direction, Obstacle Factors, and Implications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3215-3234, July.
    6. Y. R. Fan & G. H. Huang & Y. P. Li & X. Q. Wang & Z. Li, 2016. "Probabilistic Prediction for Monthly Streamflow through Coupling Stepwise Cluster Analysis and Quantile Regression Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5313-5331, November.
    7. Andrea Gioia & Maria Francesca Bruno & Vincenzo Totaro & Vito Iacobellis, 2020. "Parametric Assessment of Trend Test Power in a Changing Environment," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    8. Pezhman Allahbakhshian-Farsani & Mehdi Vafakhah & Hadi Khosravi-Farsani & Elke Hertig, 2020. "Regional Flood Frequency Analysis Through Some Machine Learning Models in Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2887-2909, July.
    9. Rakesh Kumar & Narendra Goel & Chandranath Chatterjee & Purna Nayak, 2015. "Regional Flood Frequency Analysis using Soft Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1965-1978, April.
    10. Bagher Heidarpour & Bahram Saghafian & Jafar Yazdi & Hazi Mohammad Azamathulla, 2017. "Effect of Extraordinary Large Floods on at-site Flood Frequency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4187-4205, October.
    11. Huazhu Xue & Ruirui Zhang & Wenfei Luan & Zhanliang Yuan, 2024. "The Spatiotemporal Variations in and Propagation of Meteorological, Agricultural, and Groundwater Droughts in Henan Province, China," Agriculture, MDPI, vol. 14(10), pages 1-28, October.
    12. Brunella Bonaccorso & Giuseppe T. Aronica, 2016. "Estimating Temporal Changes in Extreme Rainfall in Sicily Region (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5651-5670, December.
    13. Amir Zalnezhad & Ataur Rahman & Farhad Ahamed & Mehdi Vafakhah & Bijan Samali, 2023. "Design flood estimation at ungauged catchments using index flood method and quantile regression technique: a case study for South East Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 1839-1862, December.
    14. K. Haddad & A. Rahman, 2020. "Regional flood frequency analysis: evaluation of regions in cluster space using support vector regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 489-517, May.
    15. Neslihan Seckin & Murat Cobaner & Recep Yurtal & Tefaruk Haktanir, 2013. "Comparison of Artificial Neural Network Methods with L-moments for Estimating Flood Flow at Ungauged Sites: the Case of East Mediterranean River Basin, Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2103-2124, May.
    16. S. Baidya & Ajay Singh & Sudhindra N. Panda, 2020. "Flood frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1137-1158, February.
    17. Alan de Gois Barbosa & Alcigeimes B. Celeste & Ludmilson Abritta Mendes, 2021. "Influence of Inflow Nonstationarity on the Multipurpose Optimal Operation of Hydropower Plants Using Nonlinear Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2343-2367, June.
    18. Igor Leščešen & Mojca Šraj & Biljana Basarin & Dragoslav Pavić & Minučer Mesaroš & Manfred Mudelsee, 2022. "Regional Flood Frequency Analysis of the Sava River in South-Eastern Europe," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    19. Chang-Shian Chen & Frederick Chou & Boris Chen, 2010. "Spatial Information-Based Back-Propagation Neural Network Modeling for Outflow Estimation of Ungauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4175-4197, November.
    20. Osman Mohammadpour & Yousef Hassanzadeh & Ahmad Khodadadi & Bahram Saghafian, 2014. "Selecting the Best Flood Flow Frequency Model Using Multi-Criteria Group Decision-Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3957-3974, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06231-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.