IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i3p1803-1813.html
   My bibliography  Save this article

A study on selection of probability distributions for at-site flood frequency analysis in Australia

Author

Listed:
  • Ayesha Rahman
  • Ataur Rahman
  • Mohammad Zaman
  • Khaled Haddad
  • Amimul Ahsan
  • Monzur Imteaz

Abstract

The most direct method of design flood estimation is at-site flood frequency analysis, which relies on a relatively long period of recorded streamflow data at a given site. Selection of an appropriate probability distribution and associated parameter estimation procedure is of prime importance in at-site flood frequency analysis. The choice of the probability distribution for a given application is generally made arbitrarily as there is no sound physical basis to justify the selection. In this study, an attempt is made to investigate the suitability of as many as fifteen different probability distributions and three parameter estimation methods based on a large Australian annual maximum flood data set. A total of four goodness-of-fit tests are adopted, i.e., the Akaike information criterion, the Bayesian information criterion, Anderson–Darling test, and Kolmogorov–Smirnov test, to identify the best-fit probability distributions. Furthermore, the L-moments ratio diagram is used to make a visual assessment of the alternative distributions. It has been found that a single distribution cannot be specified as the best-fit distribution for all the Australian states as it was recommended in the Australian rainfall and runoff 1987. The log-Pearson 3, generalized extreme value, and generalized Pareto distributions have been identified as the top three best-fit distributions. It is thus recommended that these three distributions should be compared as a minimum in practical applications when making the final selection of the best-fit probability distribution in a given application in Australia. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Ayesha Rahman & Ataur Rahman & Mohammad Zaman & Khaled Haddad & Amimul Ahsan & Monzur Imteaz, 2013. "A study on selection of probability distributions for at-site flood frequency analysis in Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1803-1813, December.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:3:p:1803-1813
    DOI: 10.1007/s11069-013-0775-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0775-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0775-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruno Merz & Annegret Thieken, 2009. "Flood risk curves and uncertainty bounds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(3), pages 437-458, December.
    2. Ralf Merz & Günter Blöschl & Günter Humer, 2008. "National flood discharge mapping in Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(1), pages 53-72, July.
    3. Elias Ishak & Khaled Haddad & Mohammad Zaman & Ataur Rahman, 2011. "Scaling property of regional floods in New South Wales Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1155-1167, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felício Cassalho & Samuel Beskow & Carlos Rogério Mello & Maíra Martim Moura & Laura Kerstner & Leo Fernandes Ávila, 2018. "At-Site Flood Frequency Analysis Coupled with Multiparameter Probability Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 285-300, January.
    2. K. Haddad & A. Rahman, 2020. "Regional flood frequency analysis: evaluation of regions in cluster space using support vector regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 489-517, May.
    3. Mingcheng Du & Jianyun Zhang & Qinli Yang & Zhenlong Wang & Zhenxin Bao & Yanli Liu & Junliang Jin & Cuishan Liu & Guoqing Wang, 2021. "Spatial and temporal variation of rainfall extremes for the North Anhui Province Plain of China over 1976–2018," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2777-2797, February.
    4. Sonali Swetapadma & C. S. P. Ojha, 2020. "Selection of a basin-scale model for flood frequency analysis in Mahanadi river basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 519-552, May.
    5. Osman Mohammadpour & Yousef Hassanzadeh & Ahmad Khodadadi & Bahram Saghafian, 2014. "Selecting the Best Flood Flow Frequency Model Using Multi-Criteria Group Decision-Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3957-3974, September.
    6. Igor Leščešen & Mojca Šraj & Biljana Basarin & Dragoslav Pavić & Minučer Mesaroš & Manfred Mudelsee, 2022. "Regional Flood Frequency Analysis of the Sava River in South-Eastern Europe," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    7. Bagher Heidarpour & Bahram Saghafian & Jafar Yazdi & Hazi Mohammad Azamathulla, 2017. "Effect of Extraordinary Large Floods on at-site Flood Frequency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4187-4205, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilfredo Caballero & Ataur Rahman, 2014. "Application of Monte Carlo simulation technique for flood estimation for two catchments in New South Wales, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1475-1488, December.
    2. Klaus Schneeberger & Matthias Huttenlau & Benjamin Winter & Thomas Steinberger & Stefan Achleitner & Johann Stötter, 2019. "A Probabilistic Framework for Risk Analysis of Widespread Flood Events: A Proof‐of‐Concept Study," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 125-139, January.
    3. B. Winter & K. Schneeberger & M. Huttenlau & J. Stötter, 2018. "Sources of uncertainty in a probabilistic flood risk model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 431-446, March.
    4. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    5. O. Ionuş & M. Licurici & M. Pătroescu & S. Boengiu, 2015. "Assessment of flood-prone stripes within the Danube drainage area in the South-West Oltenia Development Region, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 69-88, February.
    6. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    7. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    8. Jianzhu Li & Qiushuang Ma & Yu Tian & Yuming Lei & Ting Zhang & Ping Feng, 2019. "Flood scaling under nonstationarity in Daqinghe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 675-696, September.
    9. Unterberger, Christian & Hudson, Paul & Botzen, W.J. Wouter & Schroeer, Katharina & Steininger, Karl W., 2019. "Future Public Sector Flood Risk and Risk Sharing Arrangements: An Assessment for Austria," Ecological Economics, Elsevier, vol. 156(C), pages 153-163.
    10. C. Neuhold, 2013. "Identifying flood-prone landfills at different spatial scales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1425-1440, September.
    11. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    12. María Bermúdez & Andreas Paul Zischg, 2018. "Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1633-1648, July.
    13. Han-Chung Yang & Chuan-Yi Wang & Jia-Xue Yang, 2014. "Applying image recording and identification for measuring water stages to prevent flood hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 737-754, November.
    14. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    15. Abdullah Al Mamoon & Niels E. Joergensen & Ataur Rahman & Hassan Qasem, 2016. "Design rainfall in Qatar: sensitivity to climate change scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1797-1810, April.
    16. J. Oliver & X. S. Qin & O. Larsen & M. Meadows & M. Fielding, 2018. "Probabilistic flood risk analysis considering morphological dynamics and dike failure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 287-307, March.
    17. R. Bharath & Amin Elshorbagy, 2018. "Flood mapping under uncertainty: a case study in the Canadian prairies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 537-560, November.
    18. Mahkameh Zarekarizi & Vivek Srikrishnan & Klaus Keller, 2020. "Neglecting Uncertainties Biases House-Elevation Decisions to Manage Riverine Flood Risks," Papers 2001.06457, arXiv.org, revised Sep 2020.
    19. Franz Sinabell & Georg Böhs & Stephanie Lackner & Dieter Pennerstorfer & Helmut Habersack & Lukas Löschner & Roswitha Samek & Bernhard Schober & Walter Seher, 2016. "Naturgefahren und die Belastung von Landeshaushalten," WIFO Studies, WIFO, number 58785.
    20. Heidi Kreibich & Anna Botto & Bruno Merz & Kai Schröter, 2017. "Probabilistic, Multivariable Flood Loss Modeling on the Mesoscale with BT‐FLEMO," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 774-787, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:3:p:1803-1813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.