IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v68y2013i3p1425-1440.html
   My bibliography  Save this article

Identifying flood-prone landfills at different spatial scales

Author

Listed:
  • C. Neuhold

Abstract

Landfills are mainly located in lowland areas close to settlements inducing flood risk of potential environmental contamination and adverse health effects. During recent flood events, numerous landfill sites were reportedly exposed to inundations, leading to erosion of landfilled material and release of pollutants threatening humans and the environment. Although emissions from landfills under regular operating conditions are well investigated, the behaviour and associated emissions in case of flooding are widely unknown. To enable environmental risk management, flood-prone landfills must be identified to establish priorities for subsequent protection and mitigation measures. This paper presents two flood risk assessment approaches at different spatial scales: a macro-scale assessment approach (MaSA) and a micro-scale assessment approach (MiSA). Both methodologies aim to determine the proportion of landfills endangered by flooding, and evaluate the impacts. The latter are expressed by means of risk categories (minor to serious) of impacts that flooded sites might have on humans and the environment. The evaluation of 1,064 landfills in Austria based on MaSA yields roughly 30 % of landfills located within or close to flood risk zones. Material inventories of 147 sites exposed to flooding are established, and potential emissions during a flood event are estimated. Three representative case study areas are selected and investigated in detail by applying the MiSA approach based on 2D hydrodynamic models to calculate flow depths and shear stress and by developing emission scenarios to validate the macro-scale screening approach (MaSA). The applications of MiSA and MaSA outlines that hazardous emissions due to flooding can lead to significant impacts on the environment. Uncertainty associated with related processes and data sources is considerably high. Nevertheless, both MiSA and MaSA provide a decision support tool to identify landfills with imminent risk for humans and the environment. Therefore, the described methodologies provide toolsets to enable environmental risk reduction by applying a priority-ranked flood risk management. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • C. Neuhold, 2013. "Identifying flood-prone landfills at different spatial scales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1425-1440, September.
  • Handle: RePEc:spr:nathaz:v:68:y:2013:i:3:p:1425-1440
    DOI: 10.1007/s11069-013-0562-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0562-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0562-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ralf Merz & Günter Blöschl & Günter Humer, 2008. "National flood discharge mapping in Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(1), pages 53-72, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. MIHAI, Florin Constantin, 2018. "Rural plastic emissions into the largestmountain lake of the Eastern Carpathians," SocArXiv ymzx7, Center for Open Science.
    2. Amin Kiaghadi & Adithya Govindarajan & Rose S. Sobel & Hanadi S. Rifai, 2020. "Environmental damage associated with severe hydrologic events: a LiDAR-based geospatial modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2711-2729, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Schneeberger & Matthias Huttenlau & Benjamin Winter & Thomas Steinberger & Stefan Achleitner & Johann Stötter, 2019. "A Probabilistic Framework for Risk Analysis of Widespread Flood Events: A Proof‐of‐Concept Study," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 125-139, January.
    2. B. Winter & K. Schneeberger & M. Huttenlau & J. Stötter, 2018. "Sources of uncertainty in a probabilistic flood risk model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 431-446, March.
    3. Franz Sinabell & Georg Böhs & Stephanie Lackner & Dieter Pennerstorfer & Helmut Habersack & Lukas Löschner & Roswitha Samek & Bernhard Schober & Walter Seher, 2016. "Naturgefahren und die Belastung von Landeshaushalten," WIFO Studies, WIFO, number 58785.
    4. Wilfredo Caballero & Ataur Rahman, 2014. "Application of Monte Carlo simulation technique for flood estimation for two catchments in New South Wales, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1475-1488, December.
    5. Junfu Gong & Cheng Yao & Zhijia Li & Yuanfang Chen & Yingchun Huang & Bingxing Tong, 2021. "Improving the flood forecasting capability of the Xinanjiang model for small- and medium-sized ungauged catchments in South China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2077-2109, April.
    6. C. Neuhold, 2013. "Identifying flood-prone landfills at different spatial scales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2015-2030, February.
    7. Sabrina Ali & Ataur Rahman, 2022. "Development of a kriging-based regional flood frequency analysis technique for South-East Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2739-2765, December.
    8. Ayesha Rahman & Ataur Rahman & Mohammad Zaman & Khaled Haddad & Amimul Ahsan & Monzur Imteaz, 2013. "A study on selection of probability distributions for at-site flood frequency analysis in Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1803-1813, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:68:y:2013:i:3:p:1425-1440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.