IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i6p1965-1978.html
   My bibliography  Save this article

Regional Flood Frequency Analysis using Soft Computing Techniques

Author

Listed:
  • Rakesh Kumar
  • Narendra Goel
  • Chandranath Chatterjee
  • Purna Nayak

Abstract

For design of various types of hydraulic structures as well as for taking different flood management measures flood frequency estimates are required. Regional flood frequency analysis is carried out employing L-moments and soft computing techniques viz. artificial neural network (ANN) and fuzzy inference system (FIS) for the lower Godavari subzone 3(f) of India. The study area covers an areal extent of 174,201 km 2 and annual maximum peak flood data of 17 catchments ranging in size from 35 to 824 km 2 are used. The data screening is carried out employing L-moments based Discordancy measure (D i ) and regional homogeneity is examined based on the heterogeneity measure (H). On the basis of the L-moment ratio diagram and Z i dist –statistic criteria, Pearson Type III (PE3) distribution is chosen as the suitable frequency distribution for the region. For the region under study, a relationship is developed between mean annual maximum peak flood and area of the catchment using the Levenberg-Marquardt (LM) iteration and the same is coupled with the PE3 based regional flood frequency relationship developed for estimation of floods of various frequencies for the ungauged catchments of the region. The regional flood frequency relationships developed based on L-moments and soft computing techniques are compared. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Rakesh Kumar & Narendra Goel & Chandranath Chatterjee & Purna Nayak, 2015. "Regional Flood Frequency Analysis using Soft Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1965-1978, April.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:6:p:1965-1978
    DOI: 10.1007/s11269-015-0922-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-0922-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-0922-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abhijit Bhuyan & Munindra Borah & Rakesh Kumar, 2010. "Regional Flood Frequency Analysis of North-Bank of the River Brahmaputra by Using LH-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1779-1790, July.
    2. Purna Nayak & Y. Rao & K. Sudheer, 2006. "Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 77-90, February.
    3. Rim Chérif & Zoubeida Bargaoui, 2013. "Regionalisation of Maximum Annual Runoff Using Hierarchical and Trellis Methods with Topographic Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2947-2963, June.
    4. Manish Goyal & Vivek Gupta, 2014. "Identification of Homogeneous Rainfall Regimes in Northeast Region of India using Fuzzy Cluster Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4491-4511, October.
    5. Nejc Bezak & Matjaž Mikoš & Mojca Šraj, 2014. "Trivariate Frequency Analyses of Peak Discharge, Hydrograph Volume and Suspended Sediment Concentration Data Using Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2195-2212, June.
    6. Leonardo Noto & Goffredo La Loggia, 2009. "Use of L-Moments Approach for Regional Flood Frequency Analysis in Sicily, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2207-2229, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farshad Ahmadi & Feridon Radmaneh & Gholam Ali Parham & Rasoul Mirabbasi, 2017. "Comparison of the performance of power law and probability distributions in the frequency analysis of flood in Dez Basin, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1313-1331, July.
    2. Samiran Das, 2020. "Assessing the Regional Concept with Sub-Sampling Approach to Identify Probability Distribution for at-Site Hydrological Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 803-817, January.
    3. Sanat Nalini Sahoo & P. Sreeja, 2016. "Relationship between peak rainfall intensity (PRI) and maximum flood depth (MFD) in an urban catchment of Northeast India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1527-1544, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Baidya & Ajay Singh & Sudhindra N. Panda, 2020. "Flood frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1137-1158, February.
    2. Sanat Nalini Sahoo & P. Sreeja, 2016. "Relationship between peak rainfall intensity (PRI) and maximum flood depth (MFD) in an urban catchment of Northeast India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1527-1544, September.
    3. T. K. Drissia & V. Jothiprakash & A. B. Anitha, 2019. "Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1013-1037, February.
    4. Zaw Latt & Hartmut Wittenberg & Brigitte Urban, 2015. "Clustering Hydrological Homogeneous Regions and Neural Network Based Index Flood Estimation for Ungauged Catchments: an Example of the Chindwin River in Myanmar," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 913-928, February.
    5. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    6. Ioannis Trichakis & Ioannis Nikolos & G. Karatzas, 2011. "Artificial Neural Network (ANN) Based Modeling for Karstic Groundwater Level Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1143-1152, March.
    7. Muhammad Waseem & Ji-yae Shin & Tae-Woong Kim, 2015. "Comparing Spatial Interpolation Schemes for Constructing a Flow Duration Curve in an Ungauged Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2249-2265, May.
    8. S. Mohanty & Madan Jha & S. Raul & R. Panda & K. Sudheer, 2015. "Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5521-5532, December.
    9. Raymond Kim & Daniel Loucks & Jery Stedinger, 2012. "Artificial Neural Network Models of Watershed Nutrient Loading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2781-2797, August.
    10. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    11. A. Izady & K. Davary & A. Alizadeh & A. Moghaddam Nia & A. Ziaei & S. Hasheminia, 2013. "Application of NN-ARX Model to Predict Groundwater Levels in the Neishaboor Plain, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4773-4794, November.
    12. Ozgur Kisi & Meysam Alizamir & Mohammad Zounemat-Kermani, 2017. "Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 367-381, May.
    13. Pezhman Allahbakhshian-Farsani & Mehdi Vafakhah & Hadi Khosravi-Farsani & Elke Hertig, 2020. "Regional Flood Frequency Analysis Through Some Machine Learning Models in Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2887-2909, July.
    14. Ting Wei & Songbai Song, 2019. "Utilization of the Copula-Based Composite Likelihood Approach to Improve Design Precipitation Estimates Accuracy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5089-5106, December.
    15. R. K. Jaiswal & T. R. Nayak & A. K. Lohani & R. V. Galkate, 2022. "Regional flood frequency modeling for a large basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1845-1861, March.
    16. Brédy, Jhemson & Gallichand, Jacques & Celicourt, Paul & Gumiere, Silvio José, 2020. "Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    17. Brunella Bonaccorso & Giuseppe T. Aronica, 2016. "Estimating Temporal Changes in Extreme Rainfall in Sicily Region (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5651-5670, December.
    18. Fawen Li & Jiale Qiao & Yong Zhao & Wei Zhang, 2014. "Risk Assessment of Groundwater and its Application. Part II: Using a Groundwater Risk Maps to Determine Control Levels of the Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4875-4893, October.
    19. Afshin Khoshand, 2021. "Application of artificial intelligence in groundwater ecosystem protection: a case study of Semnan/Sorkheh plain, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16617-16631, November.
    20. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:6:p:1965-1978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.