IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i11p2207-2229.html
   My bibliography  Save this article

Use of L-Moments Approach for Regional Flood Frequency Analysis in Sicily, Italy

Author

Listed:
  • Leonardo Noto
  • Goffredo La Loggia

Abstract

Extremely great floods are among environmental events with the most disastrous consequences for the entire world. Estimates of their return periods and design values are of great importance in hydrologic modeling, engineering practice for water resources and reservoirs design and management, planning for weather-related emergencies, etc. Regional flood frequency analysis resolves the problem of estimating the extreme flood events for catchments having short data records or ungauged catchments. This paper analyzes annual maximum peak flood discharge data recorded from more than 50 stream flow gauging sites in Sicily, Italy, in order to derive regional flood frequency curves. First these data are analyzed to point out some problems concerning the homogeneity of the single time series. On the basis of the L-moments and using cluster analysis techniques, the entire region is subdivided in five subregions whose homogeneity is tested using the L-moments based heterogeneity measure. Comparative regional flood frequency analysis studies are carried out employing the L-moments based commonly used frequency distributions. Based on the L-moment ratio diagram and other statistic criteria, generalized extreme value (GEV) distribution is identified as the robust distribution for the study area. Regional flood frequency relationships are developed to estimate floods at various return periods for gauged and ungauged catchments in different subregions of the Sicily. These relationships have been implemented using the L-moment based GEV distribution and a regional relation between mean annual peak flood and some geomorphologic and climatic parameters of catchments. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Leonardo Noto & Goffredo La Loggia, 2009. "Use of L-Moments Approach for Regional Flood Frequency Analysis in Sicily, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2207-2229, September.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:11:p:2207-2229
    DOI: 10.1007/s11269-008-9378-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9378-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9378-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rakesh Kumar & C. Chatterjee & Sanjay Kumar & A. Lohani & R. Singh, 2003. "Development of Regional Flood Frequency Relationships Using L-moments for Middle Ganga Plains Subzone 1(f) of India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(4), pages 243-257, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brunella Bonaccorso & Giuseppe T. Aronica, 2016. "Estimating Temporal Changes in Extreme Rainfall in Sicily Region (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5651-5670, December.
    2. Felício Cassalho & Samuel Beskow & Carlos Rogério Mello & Maíra Martim Moura & Laura Kerstner & Leo Fernandes Ávila, 2018. "At-Site Flood Frequency Analysis Coupled with Multiparameter Probability Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 285-300, January.
    3. Rakesh Kumar & Narendra Goel & Chandranath Chatterjee & Purna Nayak, 2015. "Regional Flood Frequency Analysis using Soft Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1965-1978, April.
    4. Giuseppe Cipolla & Antonio Francipane & Leonardo Valerio Noto, 2020. "Classification of Extreme Rainfall for a Mediterranean Region by Means of Atmospheric Circulation Patterns and Reanalysis Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3219-3235, August.
    5. Neslihan Seckin & Murat Cobaner & Recep Yurtal & Tefaruk Haktanir, 2013. "Comparison of Artificial Neural Network Methods with L-moments for Estimating Flood Flow at Ungauged Sites: the Case of East Mediterranean River Basin, Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2103-2124, May.
    6. Nurulkamal Masseran & Muhammad Aslam Mohd Safari, 2022. "Statistical Modeling on the Severity of Unhealthy Air Pollution Events in Malaysia," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    7. S. Baidya & Ajay Singh & Sudhindra N. Panda, 2020. "Flood frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1137-1158, February.
    8. Andrea Gioia & Maria Francesca Bruno & Vincenzo Totaro & Vito Iacobellis, 2020. "Parametric Assessment of Trend Test Power in a Changing Environment," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    9. T. K. Drissia & V. Jothiprakash & A. B. Anitha, 2019. "Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1013-1037, February.
    10. Pezhman Allahbakhshian-Farsani & Mehdi Vafakhah & Hadi Khosravi-Farsani & Elke Hertig, 2020. "Regional Flood Frequency Analysis Through Some Machine Learning Models in Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2887-2909, July.
    11. Chang-Shian Chen & Frederick Chou & Boris Chen, 2010. "Spatial Information-Based Back-Propagation Neural Network Modeling for Outflow Estimation of Ungauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4175-4197, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zamir Hussain & G. Pasha, 2009. "Regional Flood Frequency Analysis of the Seven Sites of Punjab, Pakistan, Using L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1917-1933, August.
    2. T. K. Drissia & V. Jothiprakash & A. B. Anitha, 2019. "Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1013-1037, February.
    3. Pankaj Mani & Chandranath Chatterjee & Rakesh Kumar, 2014. "Flood hazard assessment with multiparameter approach derived from coupled 1D and 2D hydrodynamic flow model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1553-1574, January.
    4. R. K. Jaiswal & T. R. Nayak & A. K. Lohani & R. V. Galkate, 2022. "Regional flood frequency modeling for a large basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1845-1861, March.
    5. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.
    6. Sheng Yue & Chun Wang, 2004. "Possible Regional Probability Distribution Type of Canadian Annual Streamflow by L-moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 425-438, October.
    7. Felício Cassalho & Samuel Beskow & Carlos Rogério Mello & Maíra Martim Moura & Laura Kerstner & Leo Fernandes Ávila, 2018. "At-Site Flood Frequency Analysis Coupled with Multiparameter Probability Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 285-300, January.
    8. Saralees Nadarajah & M. Ali, 2008. "Pareto Random Variables for Hydrological Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1381-1393, October.
    9. Betül Saf, 2009. "Regional Flood Frequency Analysis Using L-Moments for the West Mediterranean Region of Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 531-551, February.
    10. Abhijit Bhuyan & Munindra Borah & Rakesh Kumar, 2010. "Regional Flood Frequency Analysis of North-Bank of the River Brahmaputra by Using LH-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1779-1790, July.
    11. Reza Modarres, 2008. "Regional Frequency Distribution Type of Low Flow in North of Iran by L-moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 823-841, July.
    12. J. Ayuso-Muñoz & A. García-Marín & P. Ayuso-Ruiz & J. Estévez & R. Pizarro-Tapia & E. Taguas, 2015. "A More Efficient Rainfall Intensity-Duration-Frequency Relationship by Using an “at-site” Regional Frequency Analysis: Application at Mediterranean Climate Locations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3243-3263, July.
    13. Sonali Swetapadma & C. S. P. Ojha, 2020. "Selection of a basin-scale model for flood frequency analysis in Mahanadi river basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 519-552, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:11:p:2207-2229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.