IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i1d10.1007_s11069-021-04940-1.html
   My bibliography  Save this article

Spatial–temporal changes in meteorological and agricultural droughts in Northeast China: change patterns, response relationships and causes

Author

Listed:
  • Chong Du

    (Heilongjiang University)

  • Jiashuo Chen

    (Heilongjiang University)

  • Tangzhe Nie

    (Heilongjiang University)

  • Changlei Dai

    (Heilongjiang University)

Abstract

Under the background of climate warming, drought events occur frequently. Generally, meteorological drought leads to agricultural drought. Understanding the spatiotemporal distribution, characteristics of drought and the relationship between meteorological and agricultural drought are important for early drought warning. Northeast China (NEC) was selected as the study area. The spatiotemporal characteristics of meteorological drought and agricultural drought in different seasons in NEC were analyzed. Correlation analysis was employed to analyze the relationship between meteorological and agricultural drought in different vegetation types. Furthermore, cross-wavelet analysis was employed to further analyze the relationship between meteorological drought and agricultural drought, explore the teleconnection and large-scale climate patterns and investigate possible causes of drought variations in this region. The results showed that (1) the frequency of mild meteorological drought and low and that of moderate agricultural drought was high; (2) there was a significant positive correlation between meteorological drought and agricultural drought, while the change in agricultural drought lagged behind that of meteorological drought. (3) A strong correlation between meteorological drought and agricultural drought was identified in cropland areas. (4) The El Niño Southern Oscillation and Pacific interannual oscillation were important factors affecting the changes in meteorological drought and agricultural drought NEC. The results provide scientific ground for the sustainable development of agriculture, drought monitoring and early warning, disaster prevention and mitigation in NEC.

Suggested Citation

  • Chong Du & Jiashuo Chen & Tangzhe Nie & Changlei Dai, 2022. "Spatial–temporal changes in meteorological and agricultural droughts in Northeast China: change patterns, response relationships and causes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 155-173, January.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04940-1
    DOI: 10.1007/s11069-021-04940-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04940-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04940-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N/A, 2004. "Index for 2004," European Union Politics, , vol. 5(4), pages 511-512, December.
    2. Hyedeuk Bae & Heesook Ji & Yoon-Jin Lim & Young Ryu & Moon-Hyun Kim & Baek-Jo Kim, 2019. "Characteristics of drought propagation in South Korea: relationship between meteorological, agricultural, and hydrological droughts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 1-16, October.
    3. Huang, Shengzhi & Huang, Qiang & Chang, Jianxia & Leng, Guoyong & Xing, Li, 2015. "The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 45-54.
    4. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Muhammad Nouman Sattar & Jin-Young Lee & Ji-Yae Shin & Tae-Woong Kim, 2019. "Probabilistic Characteristics of Drought Propagation from Meteorological to Hydrological Drought in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2439-2452, May.
    6. Vassiliki Varela & Diamando Vlachogiannis & Athanasios Sfetsos & Stelios Karozis & Nadia Politi & Frédérique Giroud, 2019. "Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Samantaray, Alok Kumar & Ramadas, Meenu & Panda, Rabindra Kumar, 2022. "Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Xu, Yang & Hao, Fanghua, 2021. "Agricultural drought prediction in China based on drought propagation and large-scale drivers," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Ding, Yibo & Gong, Xinglong & Xing, Zhenxiang & Cai, Huanjie & Zhou, Zhaoqiang & Zhang, Doudou & Sun, Peng & Shi, Haiyun, 2021. "Attribution of meteorological, hydrological and agricultural drought propagation in different climatic regions of China," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Olunifesi Adekunle Suraj, 2016. "Managing Telecommunications for Development: An Analysis of Intellectual Capital in Nigerian Telecommunication Industry," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-30, March.
    7. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    8. Allais, Olivier & Etilé, Fabrice & Lecocq, Sébastien, 2015. "Mandatory labels, taxes and market forces: An empirical evaluation of fat policies," Journal of Health Economics, Elsevier, vol. 43(C), pages 27-44.
    9. M. Ionita & P. Scholz & S. Chelcea, 2016. "Assessment of droughts in Romania using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1483-1498, April.
    10. Sakinah Mat Zin & Ahmad Azrin Adnan & Iskandar Hasan Abdullah, 2017. "How Can Ibn Khaldun’s Economic Philosophy Revive the Intellectual Capital of Entrepreneurs," Asian Social Science, Canadian Center of Science and Education, vol. 13(6), pages 164-164, June.
    11. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    12. Cherchye, Laurens & Knox Lovell, C.A. & Moesen, Wim & Van Puyenbroeck, Tom, 2007. "One market, one number? A composite indicator assessment of EU internal market dynamics," European Economic Review, Elsevier, vol. 51(3), pages 749-779, April.
    13. Sandy Tubeuf & Marc Perronnin, 2008. "New prospects in the analysis of inequalities in health: a measurement of health encompassing several dimensions of health," Health, Econometrics and Data Group (HEDG) Working Papers 08/01, HEDG, c/o Department of Economics, University of York.
    14. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    15. Olga Alipova & Lada Litvinova & Andrey Lovakov & Maria Yudkevich, 2018. "Inbreds And Non-Inbreds Among Russian Academics: Short-Term Similarity And Long-Term Differences In Productivity," HSE Working papers WP BRP 48/EDU/2018, National Research University Higher School of Economics.
    16. Queiroz, Bernardo L & Gonzaga, Marcos Roberto & Nogales, Ana Maria & Torrente, Bruno & de Abreu, Daisy Maria Xavier, 2019. "Life expectancy, adult mortality and completeness of death counts in Brazil and regions: comparative analysis of IHME, IBGE and other researchers estimates of levels and trends," OSF Preprints pj3sx, Center for Open Science.
    17. Szara Katarzyna, 2019. "Uneven Distribution Possibilities of Creative Capital Development in Rural Aareas (Case Study of the Podkarpackie Communes, Poland)," Eastern European Countryside, Sciendo, vol. 25(1), pages 145-169, December.
    18. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    19. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.
    20. Cherchye, Laurens & De Rock, Bram & Kerstens, Pieter Jan, 2018. "Production with storable and durable inputs: Nonparametric analysis of intertemporal efficiency," European Journal of Operational Research, Elsevier, vol. 270(2), pages 498-513.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04940-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.