IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i1d10.1007_s11069-021-04848-w.html
   My bibliography  Save this article

Effects of different soil and water conservation measures on hydrological extremes and flood processes in the Yanhe River, Loess Plateau, China

Author

Listed:
  • ChaoJun Gu

    (Yangtze River Basin Monitoring Center Station for Soil and Water Conservation, Changjiang Water Resources Commission
    Northwest A&F University)

  • Yongqing Zhu

    (Yangtze River Basin Monitoring Center Station for Soil and Water Conservation, Changjiang Water Resources Commission)

  • Renhua Li

    (Yangtze River Basin Monitoring Center Station for Soil and Water Conservation, Changjiang Water Resources Commission)

  • He Yao

    (Yangtze River Basin Monitoring Center Station for Soil and Water Conservation, Changjiang Water Resources Commission)

  • Xingmin Mu

    (Northwest A&F University
    Institute of Soil and Water Conservation of Chinese Academy of Sciences and Ministry of Water Resources)

Abstract

The runoff and sediment load of the Loess Plateau have changed significantly due to the implementation of soil and water conservation measures since the 1970s. However, the effects of soil and water conservation measures on hydrological extremes have rarely been considered. In this study, we investigated the variations in hydrological extremes and flood processes during different periods in the Yanhe River Basin (a tributary of the Loess Plateau) based on the daily mean runoff and 117 flood event data from 1956 to 2013. The study periods were divided into reference period (1956–1969), engineering measures period (1970–1995), and biological control measures period (1996–2013) according to the change points of the annual streamflow and the actual human activity in the basin. The results of the hydrological high extremes (HF1max, HF3max, HF7max) exhibit a decreasing trend (P 80%), whereas decreased during the biological control measures period at almost all frequencies. The hydrological low extremes generally increased during both the engineering measures and biological control measures periods, particularly during the latter period. At the flood event scale, most flood event indices in connection with the runoff and sediment during the engineering measures period were significantly higher than those during the biological control measures period. The above results indicate that the ability to withstand hydrological extremes for the biological control measures was greater than that for the engineering measures in the studied basin. This work reveals the effects of different soil and water conservation measures on hydrological extremes in a typical basin of the Loess Plateau and hence can provide a useful reference for regional soil erosion control and disaster prevention policy-making.

Suggested Citation

  • ChaoJun Gu & Yongqing Zhu & Renhua Li & He Yao & Xingmin Mu, 2021. "Effects of different soil and water conservation measures on hydrological extremes and flood processes in the Yanhe River, Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 545-566, October.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04848-w
    DOI: 10.1007/s11069-021-04848-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04848-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04848-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jorge Moraes & Giampaolo Pellegrino & Maria Ballester & Luiz Martinelli & Reynaldo Victoria & Alex Krusche, 1998. "Trends in Hydrological Parameters of a Southern Brazilian Watershed and its Relation to Human Induced Changes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(4), pages 295-311, August.
    2. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    3. P. C. D. Milly & R. T. Wetherald & K. A. Dunne & T. L. Delworth, 2002. "Increasing risk of great floods in a changing climate," Nature, Nature, vol. 415(6871), pages 514-517, January.
    4. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    5. Xianghu Li & Qi Zhang & Chong-Yu Xu & Xuchun Ye, 2015. "The changing patterns of floods in Poyang Lake, China: characteristics and explanations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 651-666, March.
    6. Chengjing Nie & Hairong Li & Linsheng Yang & Shaohong Wu & Yi Liu & Yongfeng Liao, 2012. "Spatial and temporal changes in flooding and the affecting factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 425-439, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    2. Xianghu Li & Qi Zhang & Chong-Yu Xu & Xuchun Ye, 2015. "The changing patterns of floods in Poyang Lake, China: characteristics and explanations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 651-666, March.
    3. Nekruz Gulahmadov & Yaning Chen & Aminjon Gulakhmadov & Moldir Rakhimova & Manuchekhr Gulakhmadov, 2021. "Quantifying the Relative Contribution of Climate Change and Anthropogenic Activities on Runoff Variations in the Central Part of Tajikistan in Central Asia," Land, MDPI, vol. 10(5), pages 1-29, May.
    4. Guangxing Ji & Leying Wu & Liangdong Wang & Dan Yan & Zhizhu Lai, 2021. "Attribution Analysis of Seasonal Runoff in the Source Region of the Yellow River Using Seasonal Budyko Hypothesis," Land, MDPI, vol. 10(5), pages 1-14, May.
    5. Shuaijun Yue & Guangxing Ji & Junchang Huang & Mingyue Cheng & Yulong Guo & Weiqiang Chen, 2023. "Quantitative Assessment of the Contribution of Climate and Underlying Surface Change to Multiscale Runoff Variation in the Jinsha River Basin, China," Land, MDPI, vol. 12(8), pages 1-16, August.
    6. Milan Stojković & Aleksandra Ilić & Stevan Prohaska & Jasna Plavšić, 2014. "Multi-Temporal Analysis of Mean Annual and Seasonal Stream Flow Trends, Including Periodicity and Multiple Non-Linear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4319-4335, September.
    7. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    8. Xiang Li & Dongqin Yin & Xuejun Zhang & Barry F.W. Croke & Danhong Guo & Jiahong Liu & Anthony J. Jakeman & Ruirui Zhu & Li Zhang & Xiangpeng Mu & Fengran Xu & Qian Wang, 2019. "Mapping the Distribution of Water Resource Security in the Beijing-Tianjin-Hebei Region at the County Level under a Changing Context," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    9. Ali Razmi & Saeed Golian & Zahra Zahmatkesh, 2017. "Non-Stationary Frequency Analysis of Extreme Water Level: Application of Annual Maximum Series and Peak-over Threshold Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2065-2083, May.
    10. Kui Xu & Chao Ma & Jijian Lian & Lingling Bin, 2014. "Joint Probability Analysis of Extreme Precipitation and Storm Tide in a Coastal City under Changing Environment," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-11, October.
    11. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    12. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    13. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    14. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    15. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    16. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    17. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    19. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    20. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04848-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.