IDEAS home Printed from https://ideas.repec.org/a/spr/minecn/v38y2025i2d10.1007_s13563-024-00467-6.html
   My bibliography  Save this article

A simplified rare earth element mining project cost estimator - a new tool for evaluating future mine supply

Author

Listed:
  • Tim M. O’Brien

    (Akima System Engineering, Contractor to the U.S. Geological Survey)

  • Elisa Alonso

    (National Minerals Information Center)

Abstract

Rare earth elements (REE) are essential for the future of electric vehicles and renewable energy production, but currently there is limited REE production outside of China. Forecasting global future supplies of REE often relies on the valuation of advanced mining projects to assess if projects will initiate production. Classical valuation methods, such as net present value (NPV), require knowledge of initial capital and operating expenditures to assess the economic feasibility of a given project. Typical industry unit expenditure projections are highly precise but are extremely project dependent and require detailed knowledge of a site that is far beyond the level that a domestic and/or global supply-demand model can obtain. To model future REE supplies we developed a new globally representative, simplified, mining project cost model that can be used to approximate the capital and operating expenditures of greenfield REE mining projects. Results from this model allow users to estimate expenses of open-pit and underground mines with mineral processing operations that range from solely beneficiation to individual REE separation. Using our new model and an estimate of NPV, we evaluate several REE mining projects and assess the economic variables impacting the likelihood for these projects to advance to the production stage. Of 12 assessed projects located outside of China, in the early to advanced development stages, nine had positive NPV at 2011 peak REE prices, but none had positive NPV when prices reached bottom in 2016. Two projects yielded positive NPV’s using 2022 and projected 2028 prices. The viability of these projects given the impact of the volatility in REE prices explains the high uncertainty in the future supply for these mineral commodities.

Suggested Citation

  • Tim M. O’Brien & Elisa Alonso, 2025. "A simplified rare earth element mining project cost estimator - a new tool for evaluating future mine supply," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 38(2), pages 237-252, June.
  • Handle: RePEc:spr:minecn:v:38:y:2025:i:2:d:10.1007_s13563-024-00467-6
    DOI: 10.1007/s13563-024-00467-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13563-024-00467-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13563-024-00467-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riesgo García, María Victoria & Krzemień, Alicja & Manzanedo del Campo, Miguel Ángel & Menéndez Álvarez, Mario & Gent, Malcolm Richard, 2017. "Rare earth elements mining investment: It is not all about China," Resources Policy, Elsevier, vol. 53(C), pages 66-76.
    2. Walan, Petter & Davidsson, Simon & Johansson, Sheshti & Höök, Mikael, 2014. "Phosphate rock production and depletion: Regional disaggregated modeling and global implications," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 178-187.
    3. Alison G. Fritz & Thomas J. Tarka & Meagan S. Mauter, 2023. "Assessing the economic viability of unconventional rare earth element feedstocks," Nature Sustainability, Nature, vol. 6(9), pages 1103-1112, September.
    4. Xiaoyue Du & T. E. Graedel, 2011. "Global Rare Earth In‐Use Stocks in NdFeB Permanent Magnets," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 836-843, December.
    5. Nourali, Hamidreza & Osanloo, Morteza, 2019. "Mining capital cost estimation using Support Vector Regression (SVR)," Resources Policy, Elsevier, vol. 62(C), pages 527-540.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suárez Nieto, Luis & Fidalgo Valverde, Gregorio & Krzemień, Alicja & Riesgo Fernández, Pedro & Iglesias Rodríguez, Francisco Javier, 2024. "Economic risks in mining investments: A prospective analysis of capital cost estimation in copper mining projects," Resources Policy, Elsevier, vol. 99(C).
    2. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    3. Thibeault, Al & Ryder, Michael & Tomomewo, Olusegun & Mann, Michael, 2023. "A review of competitive advantage theory applied to the global rare earth industry transition," Resources Policy, Elsevier, vol. 85(PA).
    4. Chen, Yufeng & Zheng, Biao & Qu, Fang, 2020. "Modeling the nexus of crude oil, new energy and rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach," Resources Policy, Elsevier, vol. 65(C).
    5. Adam Duda & Gregorio Fidalgo Valverde, 2021. "The Economics of Coking Coal Mining: A Fossil Fuel Still Needed for Steel Production," Energies, MDPI, vol. 14(22), pages 1-12, November.
    6. Yıldız, Taşkın Deniz, 2022. "Considering the recent increase in license fees in Turkey, how can the negative effect of the fees on the mining operating costs be reduced?," Resources Policy, Elsevier, vol. 77(C).
    7. Burlakovs, Juris & Kriipsalu, Mait & Klavins, Maris & Bhatnagar, Amit & Vincevica-Gaile, Zane & Stenis, Jan & Jani, Yahya & Mykhaylenko, Valeriy & Denafas, Gintaras & Turkadze, Tsitsino & Hogland, Mar, 2017. "Paradigms on landfill mining: From dump site scavenging to ecosystem services revitalization," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 73-84.
    8. Ding, Qian & Huang, Jianbai & Chen, Jinyu & Luo, Xianfeng, 2024. "Climate warming, renewable energy consumption and rare earth market: Evidence from the United States," Energy, Elsevier, vol. 290(C).
    9. Schulze, Rita & Buchert, Matthias, 2016. "Estimates of global REE recycling potentials from NdFeB magnet material," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 12-27.
    10. Riesgo García, María Victoria & Krzemień, Alicja & Manzanedo del Campo, Miguel Ángel & Escanciano García-Miranda, Carmen & Sánchez Lasheras, Fernando, 2018. "Rare earth elements price forecasting by means of transgenic time series developed with ARIMA models," Resources Policy, Elsevier, vol. 59(C), pages 95-102.
    11. Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
    12. Yufeng Chen & Biao Zheng, 2019. "What Happens after the Rare Earth Crisis: A Systematic Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    13. Aiman Fadil & Paul Davis & John Geraghty, 2023. "A Mixed-Method Approach to Determine the Successful Factors Affecting the Criticality Level of Intermediate and Final Products on National Basis: A Case Study from Saudi Arabia," Sustainability, MDPI, vol. 15(7), pages 1-29, March.
    14. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    15. Guo, Jianxin & Tan, Xianchun & Zhu, Kaiwei & Cheng, Yonglong, 2024. "Integrated management of abatement technology investment and resource extraction," Resources Policy, Elsevier, vol. 92(C).
    16. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    17. Riesgo García, María Victoria & Krzemień, Alicja & Sáiz Bárcena, Lourdes Cecilia & Diego Álvarez, Isidro & Castañón Fernández, César, 2019. "Scoping studies of rare earth mining investments: Deciding on further project developments," Resources Policy, Elsevier, vol. 64(C).
    18. Zhang, Lei & Jiang, Peng & Zhang, Yibo & Fan, Yee Van & Geng, Yong, 2024. "Recycling impacts of renewable energy generation-related rare earth resources: A SWOT-based strategical analysis," Energy, Elsevier, vol. 312(C).
    19. Zhao, Guimei & Geng, Yong & Wei, Wendong & Bleischwitz, Raimund & Ge, Zewen, 2023. "Assessing gadolinium resource efficiency and criticality in China," Resources Policy, Elsevier, vol. 80(C).
    20. Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:38:y:2025:i:2:d:10.1007_s13563-024-00467-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.