IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v86y2017i2d10.1007_s00186-017-0595-z.html
   My bibliography  Save this article

Process and optimization implementation of the $$\alpha $$ α -ENSC value

Author

Listed:
  • Panfei Sun

    (Northwestern Polytechnical University)

  • Dongshuang Hou

    (Northwestern Polytechnical University)

  • Hao Sun

    (Northwestern Polytechnical University)

  • Hui Zhang

    (Northwestern Polytechnical University)

Abstract

In this paper, we introduce a new value called $$\alpha $$ α -ENSC value which is a convex combination of egalitarian non-separable contribution value (ENSC value) and the equal division value (ED value). The $$\alpha $$ α -ENSC value reconciles two economic thoughts: egoism and altruism. We study an allocation process under the assumption that players are partially egocentric, and the final outcome happens to be the $$\alpha $$ α -ENSC value. The $$\alpha $$ α -ENSC value is also the optimal solution for corresponding optimization models under certain complaint criterion. Several new properties are proposed to characterize the $$\alpha $$ α -ENSC value, including $$\alpha $$ α -dual individual rationality, $$\alpha $$ α -egocentric inessential game property and grand marginal contribution monotonicity.

Suggested Citation

  • Panfei Sun & Dongshuang Hou & Hao Sun & Hui Zhang, 2017. "Process and optimization implementation of the $$\alpha $$ α -ENSC value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 293-308, October.
  • Handle: RePEc:spr:mathme:v:86:y:2017:i:2:d:10.1007_s00186-017-0595-z
    DOI: 10.1007/s00186-017-0595-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-017-0595-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-017-0595-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moulin, Herve, 1985. "The separability axiom and equal-sharing methods," Journal of Economic Theory, Elsevier, vol. 36(1), pages 120-148, June.
    2. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
    3. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. M. Maschler & B. Peleg & L. S. Shapley, 1979. "Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 303-338, November.
    5. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    6. Marcin Malawski, 2013. "“Procedural” values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 305-324, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongshuang Hou & Aymeric Lardon & Panfei Sun & Genjiu Xu, 2019. "Sharing a Polluted River under Waste Flow Control," GREDEG Working Papers 2019-23, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenna Wang & Hao Sun & Rene (J.R.) van den Brink & Genjiu Xu, 2018. "The family of ideal values for cooperative games," Tinbergen Institute Discussion Papers 18-002/II, Tinbergen Institute.
    2. Wenna Wang & Hao Sun & René Brink & Genjiu Xu, 2019. "The Family of Ideal Values for Cooperative Games," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1065-1086, March.
    3. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    4. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    5. Zhang, Li & Xu, Genjiu & Sun, Hao & Li, Wenzhong, 2023. "Players’ dummification and the dummified egalitarian non-separable contribution value," Economics Letters, Elsevier, vol. 226(C).
    6. Hu, Xun-Feng, 2019. "Coalitional surplus desirability and the equal surplus division value," Economics Letters, Elsevier, vol. 179(C), pages 1-4.
    7. Dongshuang Hou & Aymeric Lardon & Panfei Sun & Hao Sun, 2019. "Procedural and optimization implementation of the weighted ENSC value," Theory and Decision, Springer, vol. 87(2), pages 171-182, September.
    8. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.
    9. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    10. Mingming Leng & Chunlin Luo & Liping Liang, 2021. "Multiplayer Allocations in the Presence of Diminishing Marginal Contributions: Cooperative Game Analysis and Applications in Management Science," Management Science, INFORMS, vol. 67(5), pages 2891-2903, May.
    11. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
    12. Takumi Kongo, 2024. "Equal support from others for unproductive players: efficient and linear values that satisfy the equal treatment and weak null player out properties for cooperative games," Annals of Operations Research, Springer, vol. 338(2), pages 973-989, July.
    13. Rene van den Brink & Youngsub Chun & Yukihiko Funaki & Zhengxing Zou, 2021. "Balanced Externalities and the Proportional Allocation of Nonseparable Contributions," Tinbergen Institute Discussion Papers 21-024/II, Tinbergen Institute.
    14. Panfei Sun & Dongshuang Hou & Hao Sun & Theo Driessen, 2017. "Optimization Implementation and Characterization of the Equal Allocation of Nonseparable Costs Value," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 336-352, April.
    15. Panfei Sun & Dongshuang Hou & Hao Sun, 2022. "Optimization implementation of solution concepts for cooperative games with stochastic payoffs," Theory and Decision, Springer, vol. 93(4), pages 691-724, November.
    16. Oishi, Takayuki & Nakayama, Mikio & Hokari, Toru & Funaki, Yukihiko, 2016. "Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 44-53.
    17. Tadeusz Radzik, 2017. "On an extension of the concept of TU-games and their values," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 149-170, August.
    18. H. Andrew Michener & Daniel J. Myers, 1998. "Probabilistic Coalition Structure Theories," Journal of Conflict Resolution, Peace Science Society (International), vol. 42(6), pages 830-860, December.
    19. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "Axiomatization and implementation of a class of solidarity values for TU-games," Theory and Decision, Springer, vol. 83(1), pages 61-94, June.
    20. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:86:y:2017:i:2:d:10.1007_s00186-017-0595-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.