IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v74y2011i1p93-120.html
   My bibliography  Save this article

Pricing and hedging of Asian options: quasi-explicit solutions via Malliavin calculus

Author

Listed:
  • Zhaojun Yang
  • Christian-Oliver Ewald
  • Olaf Menkens

Abstract

We use Malliavin calculus and the Clark–Ocone formula to derive the hedging strategy of an arithmetic Asian Call option in general terms. Furthermore we derive an expression for the density of the integral over time of a geometric Brownian motion, which allows us to express hedging strategy and price of the Asian option as an analytic expression. Numerical computations which are based on this expression are provided. Copyright Springer-Verlag 2011

Suggested Citation

  • Zhaojun Yang & Christian-Oliver Ewald & Olaf Menkens, 2011. "Pricing and hedging of Asian options: quasi-explicit solutions via Malliavin calculus," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(1), pages 93-120, August.
  • Handle: RePEc:spr:mathme:v:74:y:2011:i:1:p:93-120
    DOI: 10.1007/s00186-011-0352-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-011-0352-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-011-0352-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacques, Michel, 1996. "On the Hedging Portfolio of Asian Options," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 165-183, November.
    2. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375, October.
    3. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    4. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 377-389, September.
    5. Hélyette Geman & Marc Yor, 1996. "Pricing And Hedging Double‐Barrier Options: A Probabilistic Approach," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 365-378, October.
    6. Simon, S. & Goovaerts, M. J. & Dhaene, J., 2000. "An easy computable upper bound for the price of an arithmetic Asian option," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 175-183, May.
    7. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    8. Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
    9. Jorge A. León & Reyla Navarro & David Nualart, 2003. "An Anticipating Calculus Approach to the Utility Maximization of an Insider," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 171-185, January.
    10. Carr, Peter & Ewald, Christian-Oliver & Xiao, Yajun, 2008. "On the qualitative effect of volatility and duration on prices of Asian options," Finance Research Letters, Elsevier, vol. 5(3), pages 162-171, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gan, Lirong & Wang, Huamao & Yang, Zhaojun, 2020. "Machine learning solutions to challenges in finance: An application to the pricing of financial products," Technological Forecasting and Social Change, Elsevier, vol. 153(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewald, Christian-Oliver & Menkens, Olaf & Hung Marten Ting, Sai, 2013. "Asian and Australian options: A common perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1001-1018.
    2. Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
    3. Chueh-Yung Tsao & Chao-Ching Liu, 2012. "Asian Options with Credit Risks: Pricing and Sensitivity Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(S3), pages 96-115, September.
    4. Dan Pirjol & Lingjiong Zhu, 2023. "Sensitivities of Asian options in the Black-Scholes model," Papers 2301.06460, arXiv.org.
    5. Benhamou, Eric & Duguet, Alexandre, 2003. "Small dimension PDE for discrete Asian options," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11), pages 2095-2114.
    6. Geon Ho Choe & Minseok Kim, 2021. "Closed‐form lower bounds for the price of arithmetic average Asian options by multiple conditioning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1916-1932, December.
    7. Jacques, Michel, 1997. "The Istanbul option: Where the standard European option becomes Asian," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 139-152, November.
    8. Eric Benhamou & Alexandre Duguet, 2000. "A 2 Dimensional Pde For Discrete Asian Options," Computing in Economics and Finance 2000 33, Society for Computational Economics.
    9. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
    10. Aprahamian, Hrayer & Maddah, Bacel, 2015. "Pricing Asian options via compound gamma and orthogonal polynomials," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 21-43.
    11. Sander Willems, 2018. "Asian Option Pricing with Orthogonal Polynomials," Papers 1802.01307, arXiv.org, revised Sep 2018.
    12. Jean-Yves Datey & Genevieve Gauthier & Jean-Guy Simonato, 2003. "The Performance of Analytical Approximations for the Computation of Asian Quanto-Basket Option Prices," Multinational Finance Journal, Multinational Finance Journal, vol. 7(1-2), pages 55-82, March-Jun.
    13. Xueping Wu & Jin Zhang, 1999. "Options on the minimum or the maximum of two average prices," Review of Derivatives Research, Springer, vol. 3(2), pages 183-204, May.
    14. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    15. Leunglung Chan & Song-Ping Zhu, 2014. "An exact and explicit formula for pricing Asian options with regime switching," Papers 1407.5091, arXiv.org.
    16. Manuel Moreno & Javier F. Navas, 2008. "Australian Options," Australian Journal of Management, Australian School of Business, vol. 33(1), pages 69-93, June.
    17. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.
    18. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    19. Keng‐Hsin Lo & Kehluh Wang & Ming‐Feng Hsu, 2008. "Pricing European Asian options with skewness and kurtosis in the underlying distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(6), pages 598-616, June.
    20. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:74:y:2011:i:1:p:93-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.